Evaluation and Comparison of Lumped and Semi-Distributed Rainfall-Runoff Models

Document Type : review paper

Authors

1 Tehran University

2 Shahrekord University

Abstract

The hydrological sector is one of the most important and fundamental natural sectors in catchments. In order to evaluate the behavior of this sector under different conditions, it is essential to model hydrological processes. One of the aims of conducting hydrological studies is to determine the relationships between rainfall and runoff. Since it is not possible to measure all quantities required for the runoff analysis in the catchments, it is necessary to select a model which has a simple structure and a reduced number of parameters that can accurately simulate the runoff caused by rainfall. In this study, classification of hydrological models and the results of several models used in different case studies have initially been investigated. Furthermore, some of the information associated with several rainfall-runoff models have been noted. In the next step the model evaluation criteria and comparison of the selected models according to these criteria for the final model selection has been offered. Finally, the choice of the best model has been provided. According to the capabilities and limitations of each model, by considering the necessities and objectives of the considered rainfall-runoff model in each catchment, the appreciate model can be selected. Although it is better to select the lumped models because of their simplicity of structure and minimal required data and ease of use, it is better to select the semi-distributed models. Since semi-distributed models are in a position between the high simplicity of lumped models and the extensive required data by distributed models.

Keywords


آبابایی، ب. و سهرابی، ت. 1388. ارزیابی عملکرد SWAT در حوضه آبریز زاینده رود. مجله پژوهش ‏های حفاظت آب و خاک، 16(3): 41-58.
آورند، ر.، حمادی، ک. و تراب پوده، ح. 1386. مقایسه نتایج برآورد سیلاب با استفاده از نرم‌افزارهای HEC-HMS و WMS در حوضه آبریز مارون. نهمین سمینار سراسری آبیاری و کاهش تبخیر. دانشگاه شهید باهنر کرمان، کرمان، ایران.
سعیدی، ر. 1390. شبیه ‏سازی هیدرولوژیکی حوضه ‏های آبریز در مناطق بیابانی با استفاده از مدل SWAT، دانشکده مهندسی عمران، دانشگاه تهران. پایان ‏نامه کارشناسی ارشد.
شریفی، ف.، صفارپور، ش. و ایوب زاده، س.ع. 1383. ارزیابی مدل رایانه ‏ای AWBM2002 در شبیه‌سازی فرآیندهای هیدرولوژیکی تعدادی از حوزه‏ های آبخیز ایران، پژوهش و سازندگی، 35: 42-63.
علیزاده، ا. 1387. اصول هیدرولوژی کاربردی. دانشگاه فردوسی مشهد.
گودرزی، م.ر.، ذهبیون، ب.، مساح بوانی، ع.ر. و کمال، ع.ر. 1391. مقایسه عملکرد سه مدل هیدرولوژی SWAT ،IHACRES و SIMHYD در شبیه‏ سازی رواناب حوضه قره ‏سو. مجله مدیریت آب و آبیاری، 11: 25-40.
گودرزی، م.ر.، ذهبیون، ب. و مساح بوانی، ع. 1395. شبیه‌سازی بارش–رواناب حوضه قره‌سو با استفاده از مدل SWAT. فصلنامه علوم و تکنولوژی محیط‏زیست، 11: 18-20.
Argent R., Podger G., Grayson R. and Fowler K. 2005. E2 Catchment modeling software User Guide. Corporative Research Centre for Catchment Hydrology.
Arnhjerg - Nielsen K. and Harremoes. 1995. Prediction of hydrological reduction factor and Initial loss in urban surface runoff from small ungaged catchments. Atmospheric Research, 42: 137-147.
Arnold J.G., Srinivasan R., Muttiah R.S. and Williams J.R. 1998. Large area hydrologic modeling and assessment: Part I. Model development. J. American Water Resour. Assoc, 34(1): 73-89.
Arnold J.G. and N. Fohrer. 2005. SWAT 2000: Current capabilities and research opportunities in applied watershed modeling. Hydrol. Process., 19(3): 563-572.
Beven K.J. 2000. Rainfall-runoff modelling. The Primer. Wiley, 360.
Borah D.K. and Bera M. 2003. Watershed-scale hydrologic and nonpointsource pollution models: review of mathematical bases. Trans. ASAE., 46(6): 1553-1566.
Borah D.K. and Bera M. 2004. Watershed-scale hydrologic and nonpointsource pollution models: review of applications. Trans. ASAE,. 47(3): 789-803.
Bouabid R. and Chafai Elalaoui A. 2010. Impact of climate change on water resources in Morocco: The case of Sebou Basin. Economics of drought and drought preparedness in a climate change context., 95: 57-62.
Boughton W.C. 1993. A Hydrograph-Based Model for Estimating the Water Yield of Ungauged Catchments, Inst. Engs. Australia, Nat. Conf. Publ., 93(14): 317-324.
Boughton WC. 2004. The Australian Water Balance Model. Environmental Modelling and Software,19(10): 943-956.
Carla Carcano E., Bartolini P., Muselli M. and Piroddi L. 2008. Jordan recurrent neural network versus IHACRES in modelling daily streamflows. Journal of Hydrology, 362: 291– 307.
Chang T.K., Talei A., Alaghmand S. and Po-Leen Ooi M. 2017. Choice of rainfall inputs for event-based rainfall-runoff modeling in a catchment with multiple rainfall stations using data-driven techniques, Journal of Hydrology, 545: 100–108
Chiew F.H.S., Peel M.C. and Western A.W. 2002. Application and testing of the simple rainfall-runoff model SIMHYD, In: Mathematical Models of Small Watershed Hydrology and Applications (Editors: V.P. Singh and D.K. Frevert). Water Resources Publication, Littleton, Colorado, USA. 335-367.
Dakhlaoui H., Ruelland D., Tramblay Y. and Bargaoui Z. 2017. Evaluating the robustness of conceptual rainfall-runoff models under climate variability in northern Tunisia, Journal of Hydrology, 550 : 2101-217.
Gassman P.W., Reyes M.R., Green C.H. and Arnold J.G. 2007. The soil and water assessment tool: Historical development, applications, and future research directions. American Society of Agricultural and Biological Engineer, 50(4): 1211-1250.
Golmohammadi G., Rudra R., Dickinson T., Goel G. and Veliz M. 2017. Predicting the temporal variation of flow contributing areas using SWAT, Journal of Hydrology, 547: 375–386.
Haydon S. and Deletic A. 2007. Sensitivity testing of a coupled Escherichia coli –Hydrologic catchment model. Journal of Hydrology, 338: 161–173.
Hewett J.D. and Hibbert A.P. 1967. Factors Affecting Response of Small Watersheds to Precipitation in Humid Areas, In Forest Hydrology, Edited by W.E. Sopper and H. W. Lull, Pergammon, New York. 275-290.
Horton R.A. 1933. The role of infiltration in the hydrologic cycle. Transactions-American Geophysical Union, 14: 446–460.
http://www.hec.usace.army.mil/software/hec-hms/index.html .
http://www.mpassociates.gr/software/environment/ihacres.html.
http://www.smhi.se/sgn0106/if/hydrologi/hbv.htm.
http://www.smhi.se/foretag/m/hbv_demo/html/welcome.html.
Hydrologic Modeling System HEC-HMS, User,s Manual Version 3.5. 2010. Hydrologic Engineering Center.
IHACRES, “User Guide”. 2004.
Jakeman A.J. and Hornberger G.M. 1993. How Much Complexity Is Warranted in a Rainfall-Runoff Model? Water Resources Research, 29: 2637-2649
Jones R.N., Chiew H.S., Boughton W.C. and Zhang L. 2006. Estimating the sensitivity of mean annual runoff to climate change using selected hydrological models. Advances in Water Resources, 29: 1419–1429.
Li H. and Zhang Y. 2017. Regionalising rainfall-runoff modelling for predicting daily runoff: Comparing gridded spatial proximity and gridded integrated similarity approaches against their lumped counterparts. Journal of Hydrology, 550: 279–293.
Loucks D.P., Beek E.V., Stedinger J.R. and Dijkman J.P.M. 2005. Water Resources Systems Planning and Management: An Introduction to Methods, Models and Applications. UNESCO.
Martinez J. 1975. Snowmelt-Runoff Model for stream flow forecasts. Nordic Hydrol, 6(3):145-154.
Neitsch S.L., Arnold J.G., Kiniry J.R., Williams J.R. and King K.W. 2005. Soil and water assessment tool: Theoretical documentation. Blackland Research Center, Texas Agricultural Experiment Station.
Peel M.C., Chiew F.H.S., Western A.W. and McMahon T.A. 2000. Extension of Unimpaired Monthly Streamflow Data and Regionalisation of Parameter Values to Estimate Streamflow in Ungauged Catchments, Report prepared for the National Land and Water Resources Audit, In Australian Natural Resources Atlas.
Reed S., Schaake J. and Zhang Z.Y.. 2007. A distributed hydrologic model and threshold frequency-based method for flash flood forecasting at ungauged locations. Journal of Hydrology, v. 337: 402-420.
Shah S.M.S., O'Connell P.E. and Hosking J.R.M. 1996. Modelling the effects of spatial variability in rainfall on catchment response. 1. Formulation and calibration of a stochastic rainfall field model. Journal of hydrology, v. 175: 67-88.
Sharifi F. and Boyd M.J. 1994. A Comparision of the SFB and AWBM rainfall-runoff models, 25 th Congress of The International Assosiation of Hydrologeologists/ 21-25 November 1994. International Hydrology & Water Resources Symposium of the Institution of Engineers, Australia. ADELAIDE. 491- 495.
SHMI. 2003. Homepage of the Original HBV-Model. URL:
USACE. 2000. HEC-HMS Technical Manual, Hydrologic Engineering Center, Davis, CA, 187.
Van Liew M.W., Garbrecht J.D. and Arnold J.G. 2003. Simulation of the impacts of flood retarding structures on streamflow for a watershed in southwestern Oklahoma under dry, average, and wet climatic conditions. J. Soil Water Conserv, 58(6): 340-348.
CAPTCHA Image