کاربرد ارزیابی چرخه عمر بر آب و محیط‏زیست

نوع مقاله : فنی و ترویجی

نویسندگان

1 دانشجوی دکترا، گروه علوم و مهندسی آب، دانشگاه فردوسی مشهد، مشهد، ایران

2 دانشیار، گروه علوم و مهندسی آب، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

یکی از اهداف ارزیابی چرخه عمر، تصمیم‌‏گیری محیط‏زیستی در مورد پاک‏سازی محل‌‏های آلوده، آب‏‌های آلوده و احیای آب با روش‌‏های مختلف است. مشکلات کمبود آب به دلیل کاهش بارندگی، افزایش جمعیت، کاهش منابع آب و عدم وجود چارچوب قانونی برای مدیریت آب جدی‌تر می‌شود. بنابراین، تجزیه و تحلیل مناسب آثار و نتایج روش‌‏های مورد استفاده جهت تصفیه آب، عوامل آلوده‌‏کننده آب‏‌های زیرزمینی و فرآیندهای مختلف تأمین آب مورد نیاز، لازم بوده و یکی از ابزارهایی که می‌‏تواند چنین تحلیلی را انجام دهد، ارزیابی چرخه عمر (LCA) است که براساس درک کامل سیستم از داده‌‏های واقعی به‏ دست آمده است. در این پژوهش به تحلیل ارزیابی چرخه عمر بر فرآیندهای تصفیه فاضلاب، نمک‏زدایی و ردپای آب با در نظر گرفتن منابع آبی مختلف پرداخته شده است. نتایج این تحلیل نشان داد بیشترین موضوع مورد بررسی در ارزیابی چرخه عمر تصفیه فاضلاب و بیشترین نوع فاضلاب مورد مطالعه فاضلاب شهری بوده است. کمترین موضوع مورد بررسی مهندسی رودخانه بود. در بین کشورهای مختلف سهم ایران از مطالعات ارزیابی چرخه عمر بر مدیریت آب، کمترین تعداد بوده و با توجه ‏به اهمیت موضوع ارزیابی چرخه عمر و تأثیر محیط‏زیستی روش‌‏ها و فرآیندهای مختلف بر تأمین آب مورد نیاز در بخش‌‏های کشاورزی، شرب و صنعت توجه و انجام بیشتر مطالعات در این زمینه را می‌‏طلبد.

کلیدواژه‌ها

موضوعات


دکامین، م.، برمکی، م.، کانونی، ا. و موسوی مشکینی، س. م. 1398. ارزیابی اثرات محیط زیستی و ردپای آب گیاه زراعی سویا در مزارع اردبیل. فصلنامه علوم و تکنولوژی محیط زیست، 21(8): 175-184. i10.22034/jest.2020.21113.3011
ابراهیمی، م.، دستان، س. و یدی، ر. 1397. ارزیابی چرخه حیات ردپای اکولوژیک آب در تولید گندم تحت اثر رژیم های آبیاری با کاربرد نانوسیلیس و نانو کلات پتاسیم در منطقه بوشهر. نشریه علمی تولید گیاهان زراعی، 11(4): 71-88.

Al-Kaabi A.H. and Mackey H.R. 2019. Environmental assessment of intake alternatives for seawater reverse osmosis in the Arabian Gulf. Journal of Environmental Management, Vol.242: 22-30. doi.org/10.1016/j.jenvman.2019.04.051
Beavis P. and Lundie S. 2003. Integrated Environmental Assessment of Tertiary and Residuals Treatment−LCA in the Wastewater Industry. Journal of Water Science Technology., 47(7): 109–116. DOI:10.2166/wst.2003.0678
Bedford T. and Cooke R. 2001. Probabilistic Risk Analysis: Foundations and Methods. Cambridge University Press: Cambridge. 1st ed. Cambridge, United Kingdom.
Bevington P. and Robinson D.K. 2002. Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill Education. 3rd Edition. Boston, MA, USA.
Çapa S., Özdemir A., Günkaya Z., Özkan A. and Banar M. 2022. Environmental and economic assessment based on life cycle approaches for industrial wastewater treatment and water recovery. https://doi.org/10.1016/j.jwpe.2022.103002
Cherif H., Champenois G. and Belhadj J. 2016. Environmental life cycle analysis of a water pumping and desalination process powered by intermittent renewable energy sources. Renewable and Sustainable Energy Reviews 59: 1504e1513. doi.org/10.1016/j.rser.2016.01.094. 
Christensen TH., Bhander G., Lindvall H., Larsen AW., Fruergaard T., Damgaard A., Manfredi S., Boldrin A., Riber C. and Hauschild M. 2007. Experience with the use of LCA-modelling (EASEWASTE) in waste management. Journal of Waste Management Research, 25: 257–262. 10.1177/0734242X07079184 
Friedrich E., Pillay S., Buckley C.A. 2007. The Use of LCA in the Water Industry and the Case for an Environmental Performance Indicator. Water SA, 33(4): 443–451. 10.4314/wsa.v33i4.52938
Funtowicz, S.O. and Ravetz, J.R. 1993. Science for the Post-Normal Age. Futures, 25: 739–755.
Hellweg S., Fischer U., Hofstetter TB. and Hungerbuhler K. 2005. Site-dependent fate assessment in LCA: transport of heavy metals in soil. Journal of  Cleaner Production, 13(4): 341–361. doi.org/10.1016/j.jclepro.2003.10.003
Hofstetter P. 2000. Perspectives in Life Cycle Impact Assessment: A Structured Approach to Combine Models of the Technosphere, Ecosphere, and Valuesphere. International Journal of Life Cycle Assess, 5: 58. doi.org/10.1007/978-1-4615-5127-0
Igos E.,  Benetto E., Meyer R., Baustert P. and Othoniel B. 2019. How to Treat Uncertainties in Life Cycle Assessment Studies? International Journal Life Cycle Assess, 24: 794–807. doi.org/10.1007/s11367-018-1477-1
Jolliet O., Margni M., Charles R., Humbert S., Payet J., Rebitzer G. and Rosenbaum R. 2003. IMPACT 2002+: A new life cycle impact assessment methodology. Int J LCA 8, 324–330. doi.org/10.1007/BF02978505
Karami E. 2015. A Human Ecology Approach to Water Scarcity in the Context of the MENA Countries. Ecological Society of America 100th Annual Meeting, Baltimore, Maryland. 10.4236/jwarp.2013.54A008
Koehler A. 2008. Water use in LCA: managing the planet’s freshwater resources. International  Journal Life Cycle Assess, 13: 451–455. doi:10.1007/s11367-008-0028-6.
Lassaux S., Renzoni R. and Germain A. 2007. Life Cycle Assessment of Water from the Pumping Station to the Wastewater Treatment Plant. Internatinal Journal of L.C.A., 12(2): 118–126. doi.org/10.1065/lca2005.12.243
Lundie S., Peters G.M. and Beavis P.C. 2004. Life Cycle Assessment for Sustainable Metropolitan Water Systems Planning. Environ. Sci. Technol., 38: 3465−3473. doi.org/10.1021/es034206m
Mohapatra P.K. 2002. Improving Eco-Efficiency of Amsterdam Water Supply: a LCA Approach. Journal of Water Supply: Research and Technology-Aqua, 51(4): 217–227. 10.2166/aqua.2002.0019
Motoshita M. Itsubo N. and Inaba A. 2008. Development of impact assessment method on health damages of undernourishment related to agricultural water scarcity. In Proceedings of the Eighth International Conference on EcoBalance.Tokyo, Japan.
Opher T., Friedler E. and Shapira A. 2018. Comparative life cycle sustainability assessment of urban water reuse at various centralization scales. International Journal Life Cycle Assess, 24: 1319e1332. 10.1007/s11367-018-1469-1 
Raluy R.G., Serra L., Uche J. and Valero A. 2004. Life Cycle Assessment of Desalination Technologies Integrated with Energy Production Systems. Desalination, 167: 445–458. doi.org/10.1016/j.desal.2004.06.160
Raluy R.G., Serra L. and Uche J. 2005. Life Cycle Assessment of Desalination Technologies Integrated with Renewable Energies. Desalination, 183: 81–93.
Ronquim F.M., Sakamoto H.M., Mierzwa J.C., Kulay L., Seckler M.M. 2019. Ecoefficiency analysis of desalination by precipitation integrated with reverse. osmosis for zero liquid discharge in oil refineries. Clean. Prod, 250: 119547. doi.org/10.1016/j.jclepro.2019.119547
Shahabi M.P., Mchugh A., Anda M. and Ho G. 2017. A framework for planning sustainable seawater desalination water supply. Sci. Total Environ, 575: 826-835. 10.1016/j.scitotenv.2016.09.136 
Stewart M. and Jolliet O.2004. User needs analysis and development of priorities for life cycle impact assessment. International. Journal LCA, 9: 153–160. doi.org/10.1007/BF02994189
Stokes J. and Horvath A. 2006. Life Cycle Energy Assessment of Alternative Water Supply Systems. International Journal L.C.A, 11 (5): 335 – 343. 
Stokes J. and Horvath A. 2009. Energy and Air Emission Effects of Water Supply. Environ. Sci. Technol., 43: 2680–2687. 10.1021/es801802h
Tarantini M. and Federica F. 2001. LCA of Drinking and Wastewater Treatment Systems of Bologna City. Final results, in IRCEW Conference. Fortaleza, Brazil.
Vince F., Aoustin E., Bréant P., Marechal F. 2008. LCA tool for the environmental evaluation of potable water production. Desalination, 220(1-3): 37-56. https://doi.org/10.1016/j.desal.2007.01.021 
WOOD C. 2002. Environmental Impact Assessment: a Comparative Review. 2nd edition. Prentice Hall. Harlow, England.
CAPTCHA Image
دوره 10، شماره 1 - شماره پیاپی 27
امنیت آبی و غذایی در برنامه هفتم توسعه و آمایش سرزمین
خرداد 1402
صفحه 67-76
  • تاریخ دریافت: 26 آبان 1401
  • تاریخ بازنگری: 09 بهمن 1401
  • تاریخ پذیرش: 23 فروردین 1402