مروری بر روش‌ها و مدل‌های برهمکنش آب سطحی-زیرزمینی با تمرکز بر مدل‌های جامع منطقه‌ای

نوع مقاله : مقاله علمی- ترویجی

نویسندگان

1 دانشگاه گرگان

2 دانشگاه علوم کشاورزی و منابع‏طبیعی گرگان

3 دانشکده منابع‏طبیعی و علوم زمین، دانشگاه شهرکرد

چکیده

آب‏ های سطحی و زیرزمینی در سیستم هیدرولوژی اجزای جدا از هم نیستند و در مقیاس ‏های مختلف محلی یا منطقه‏ ای دارای برهمکنشی پویا می‏ باشند. در بخش اول این تحقیق به مرور مفاهیم و مطالب کلی در زمینه برهمکنش آب سطحی و زیرزمینی پرداخته شده است و در بخش دوم ضمن مروری بر اهداف اصلی و همچنین مطالعات علمی انجام شده در زمینه GW-SW در مقیاس ‏های مختلف مکانی از مقیاس نقطه‏ ای تا مقیاس منطقه ‏ای بررسی شد. در هر یک از این مقیاس‏ ها تفاوت‏ های مکانیسم برهمکنش با سایر مقیاس ‏ها بررسی و سپس مدل‏سازی جامع منطقه ‏ای در مقیاس منطقه ‏ای به‏ صورت خاص مطالعه شد. بررسی مطالعات انجام شده در رابطه با GW-SW در مقیاس منطقه‏ ای نشان می ‏دهد که مطالعات اندکی مستقیما در این مقیاس انجام شده‏ اند. بهترین منبع اطلاعات درباره GW-SW در مقیاس منطقه‏ ای، مدل‏سازی جامع است. انواع زیادی از روش‏های مدل‏سازی وجود دارند که برخی از این روش‏ ها قابلیت کاربرد در مقیاس منطقه‏ ای را دارند اما هنوز کاربردهای واقعی مقیاس منطقه‏ ای آن‏ها نادر و دانش در دسترس در این رابطه پراکنده و برای استفاده مشکل می‏ باشد. از آنجایی‏که در مقیاس منطقه ‏ای باید برهمکنش به‏ عنوان مجموعه ‏ای از فرآیندهای هیدرولوژیکی در یک منطقه در نظر گرفته شود، مدل‏ های جامع فیزیک-محور روش مناسبی برای بررسی این موضوع می‏ باشند. بیشتر محققان معتقدند مدل‏سازی جامع منطقه ‏ای محدود به دسترسی به داده ‏ها است و علی‏رغم جذابیت مدل‏ های فیزیکی، بهره‏ گیری از مدل‏های نسبتاً ساده پیچیدگی ‏های سیستم‏های منطقه‏ ای را ساده‏ سازی می ‏نماید.

کلیدواژه‌ها


آذری، آ.، علی محمد آخوند، ع.، رادمنش، ف. و حقیقی، ع. 1394. شبیه ‏سازی اندرکنش آب سطحی و زیرزمینی در شرایط بهره ‏برداری تلفیقی (مطالعه موردی: دشت دز). نشریه علوم و مهندسی آبیاری (مجله علمی کشاورزی)، 38(2): 33-47.
زیبایی، م.ح.، زیبایی، م. و اردوخانی، ک. 1392. ارزیابی سناریوهای استفاده تلفیقی از منابع آب سطحی و زیرزمینی در دشت فیروزآباد فارس. مجله علمی -پژوهشی تحقیقات اقتصاد کشاورزی، 1: 157-181.
شمسایی، ا و فرقانی، ع. 1390. بهره ‏برداری تلفیقی از منابع آب سطحی و زیرزمینی در مناطق خشک. مجله علمی پژوهشی تحقیقات- منابع آب ایران، 7: 26-37.
فاریابی، م. و چیت‏سازان، م. 1395. بررسی برهمکنش رودخانه و آبخوان با استفاده از پارامترهای فیزیکوشیمیایی، مطالعه موردی: بخش شمالی محدوده دزفول- اندیمشک. فصلنامه علمی پژوهشی زمین ‏شناسی محیط ‏زیست، 10(34): 101-115.
Abdollahi K.h. Bshir I., Verbeiren B., Harouna M.R., Griensven A.V., Huysmans M. and Batelaan O. 2017. A distributed monthly water balance model: formulation and application on Black Volta Basin. Environ Earth Sci, 76: 198.
Ajami H. Evans J.P. McCabe M.F. and Stisen S. 2014a. Technical note: Reducing the spin-up time of integrated surface water-groundwater models. Hydrol Earth Syst Sci, 18: 5169–5179.
Ajami H. McCabe M.F. Evans J.P. Stisen S. 2014b. Assessing the impact of model spin-up on surface watergroundwater interactions using an integrated hydrologic model. Water Resour Res, 50: 2636–2656.
Ala-aho P., Rossi P.M., Isokangas E. and Kløve B. 2015. fully integrated surface–subsurface flow modelling of groundwater–lake interaction in an esker aquifer: Model verification with stable isotopes and airborne thermal imaging. J Hydrol, 522: 391–406.
Argent R.M., Grayson R.B. and Ewing S.A. 1999. Integrated models for environmental management: Issues of process and design. Environ Int, 25: 693–699.
Barthel R. and Banzhaf S. 2016. Groundwater and Surface Water Interaction at the Regional-scale – A Review with Focus on Regional Integrated Models. Water Resour Manage, 30: 1–32.
Bartsch S., Frei S., Ruidisch M., Shope C.L., Peiffer S., Kim B. and Fleckenstein J.H. 2014. River-aquifer exchange fluxes under monsoonal climate conditions. J Hydrol, 509: 601–614.
Born N. 2011. Conjunctive water management: how to use the full potential, a literature research, Bachelor thesis Irrigation and Water Engineering submitted in partial fulfillment of the degree of Bachelor of Science in International Land and Water Management at Wageningen University, the Netherlands.
Borowski I. and Hare M. 2007. Exploring the gap between water managers and researchers: Difficulties of modelbased tools to support practical water management. Water Resour Manag, 21: 1049–1074.
Bronstert A., Carrera J., Kabat P. and Lütkemeier S. 2005. Coupled models for the hydrological cycle – integrating atmosphere, biosphere, and pedosphere. Springer.
Brugnach M., Tagg A., Keil F. and De Lange W.J. 2007. Uncertainty matters: Computer models at the science-policy interface. Water Resour Manag, 21: 1075–1090.
Brunke M. and Gonser T. 1997. The ecological significance of exchange processes between rivers and ground-water. Freshwater Biol, 37: 1–33.
Brunner P., Simmons C.T., Cook P.G. and Therrien R. 2010. Modeling Surface Water-Groundwater Interaction with MODFLOW: Some Considerations. Ground Water, 48:174–180.
Brunner P. and Simmons C.T. 2012. HydroGeoSphere: A Fully Integrated, Physically Based Hydrological Model. Ground Water, 50: 170–176.
Camporese M., Paniconi C., Putti M. and Orlandini S. 2010. Surface-subsurface flow modeling with path-based runoff routing, boundary condition-based coupling, and assimilation of multisource observation data. Water Resour Res, 46: 22.
Christine E., Hatch Andrew T., Fisher Justin S., Revenaugh Constantz J. and Ruehl C. 2006. Quantifying surface water–groundwater interactions using time series analysis of streambed thermal records: Method development. WATER RESOURCES RESEARCH, 42.
Condon L.E. Maxwell RM. 2014. Groundwater-fed irrigation impacts spatially distributed temporal scaling behavior of the natural system: A spatio-temporal framework for understanding water management impacts Environ Res Lett 9.
Corinna A., Thorsten W. and Gunnar N. 2008. Groundwater-Surface Water Interaction: Process Understanding, Conceptualization and Modelling (IAHS Proceedings & Reports). ISSN ,0144- 7815.
De Kok J.L. and Wind H.G. 2003. Design and application of decision-support systems for integrated water management: lessons to be learnt. Phys Chem Earth 28: 571–578.
Etchevers P., Golaz C. and Habets F. 2001. Simulation of the water budget and the river flows of the Rhone basin from 1981 to 1994. J Hydrol, 244: 60–85.
Fleckenstein J.H., Niswonger R.G. and Fogg G.E. 2006. River-aquifer interactions, geologic heterogeneity, and lowflow management. Ground Water, 44: 837–852.
Ford D. Williamsm P. 2007. Karst Hydrogeology and Geomorphology: ohn&Sons, Ltd.
Jacobs K.L. and Holway J. M. 2004. Managing for sustainability in an arid climate: Lessons learned from 20 years of groundwater management in Arizona, USA. Hydrogeology Journal, 12(1): 52-65.
Gräbe A., Rödiger T., Rink K., Fischer T., Sun F., Wang W., Siebert C. and Kolditz O. 2013. Numerical analysis of the groundwater regime in the western Dead Sea escarpment, Israel + West Bank. Environ Earth Sci, 69: 571–585.
Goderniaux P., Brouyere S., Blenkinsop S., Burton A., Fowler H.J., Orban P. and Dassargues A. 2011. Modeling climate change impacts on groundwater resources using transient stochastic climatic scenarios. Water Resour Res, 47(12): 1-17.
Grayson R.B. and Bloeschl G. 2000. Spatial Patterns in Hydrological Processes: Observations and Modelling. Cambridge University Press, Cambridge.
Kim N.W., Chung I,M., Won Y.S. and Arnold J.G. 2008. Development and application of the integrated SWATMODFLOW model. J Hydrol, 356: 1–16.
Kolditz O. and et al . 2012. OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media, Environ Earth Sci, 67: 589–59.
Kollet S.J. and Maxwell R.M. 2006. Integrated surface-groundwater flow modeling: a freesurface overland flow boundary condition in a parallel groundwater flow model. Adv Water Resour, 29: 945–58.
Kollet S.J., Maxwell RM., Woodward CS., Smith S., Vanderborght J., Vereecken H. and Simmer C. 2010. Proof of concept of regional scale hydrologic simulations at hydrologic resolution utilizing massively parallel computer resources. Water Resour Res, 46(4): 1-7.
Ledoux E., Gomez E., Monget J.M., Viavattene C., Viennot P., Ducharne A., Benoit M., Mignolet C., Schott C. and Mary B. 2007. Agriculture and groundwater nitrate contamination in the Seine basin. The STICS-MODCOU modelling chain. Sci Total Environ, 375: 33–47.
Lerner D.N., Kumar V., Holzkämper A., Surridge B.W.J. and Harris B. 2011. Challenges in developing an integrated catchment management model. Water Environ J., 25: 345–354.
Maxwell R.M., Kollet S.J., Smith S.G., Woodward C.S., Falgout R.D., Ferguson I.M., Baldwin C., Bosl W.J., Hornung R. and Ashby S. 2010. ParFlow User’s Manual. International Ground Water Modeling Center Report GWMI, 01: 132.
Maxwell R.M., Putti M., Meyerhoff S., Delfs J.O., Ferguson I.M., Ivanov V., Kim J., Kolditz O., Kollet S.J., Kumar M., Lopez S., Niu J., Paniconi C., Park Y.J., Phanikumar M.S., Shen C., Sudicky E.A. and Sulis M. 2014. Surfacesubsurface model intercomparison: A first set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resour Res, 50: 1531–1549.
Miller N.L., Dale L.L., Brush C.F., Vicuna S.D., Kadir T.N., Dogrul E.C. and Chung F.I .2009. Drought resilience of the California central valley surface-ground-water- conveyance system. J AmWater Resour As, 45: 857–866.
Miller C.T., Dawson C.N., Farthing M.W., Hou T.Y., Huang J.F., Kees C.E., Kelley CT. and Langtangen H.P. 2013. Numerical simulation of water resources problems: Models, methods, and trends. Adv Water Resour, 51: 405–437.
Olsson J.A. and Andersson L. 2007. Possibilities and problems with the use of models as a communication tool in water resource management. Water Resour Manag, 21: 97–110.
Qin H., Cao G., Kristensen M., Refsgaard J.C., Rasmussen M.O., He X., Liu J., Shu Y. and Zheng C. 2013. Integrated hydrological modeling of the North China Plain and implications for sustainable water management. Hydrol Earth Syst Sci, 17: 3759–3778.
Ragab R., Bromley J. D., Rflinger G. and Katsikides S. 2010. IHMS-Integrated hydrological modelling system. Part 2.application of linked unsaturated, DiCaSM and saturated zone, MODFLOW models on Kouris and Akrotiri catchments in Cyprus. Hydrol Process, 24: 2681–2692.
Rivard C., Lefebvre R. and Paradis D. 2014. Regional recharge estimation using multiple methods: An application in the Annapolis Valley, Nova Scotia (Canada). Environ Earth Sci, 71: 1389–1408.
Rorabaugh. M.I. 1964. Estimating changes in bank storage and ground-water contribution to streamflow: International Association of Scientific Hydrology, Publication 63: 432-441.
Rushton K.R. and Tomlinson L.M. 1979. Possible mechanisms for leakage between aquifers and rivers. J Hydrol 40: 49–65.
Said A., Stevens D.K. and Sehlke G. 2005. Estimating water budget in a regional aquifer using HSPF-modflow integrated model. J Am Water Resour As, 41: 55–66.
Sebben M.L., Werner A.D., Liggett J.E., Partington D. and Simmons C.T .2013. On the testing of fully integrated surface-subsurface hydrological models. Hydrol Process, 27: 1276–1285.
Semenova O. and Beven K. 2015. Barriers to progress in distributed hydrological modelling. Hydrol Process:n/a-n/a.
Scibek J., Allen D.M., Cannon A.J. and Whitfield P.H. 2007. Groundwater–surface water interaction under scenarios of climate change using a high-resolution transient groundwater model. J Hydrol, 333:165–181.
Singh S.K. Liang J.Y. and Bardossy A. 2012. Improving the calibration strategy of the physically-based model WaSiM-ETH using critical events. Hydrol Sci J., 57: 1487–1505.
Sivakumar B. 2004. Dominant processes concept in hydrology: moving forward. Hydrol Process, 18: 2349–2353.
Sivakumar B. 2008. Dominant processes concept, model simplification and classification framework in catchment hydrology. Stoch Env Res Risk A, 22: 737–748.
Sivapalan M.B.G., Zhang L. and Vertessy R. 2003. Downward Approach to Hydrological Prediction. Hydrol Process, 17: 2101–2111.
Sophocleous M.A .2002. Groundwater recharge. In: Silveira L (Ed) Encyclopedia of life support systems. EOLSS, Oxford. GROUNDWATER, 126- 164.
Steven M.W. 2015. Groundwater – surface water interactions: perspectives on the development of the science over the last 20 years. Freshwater Science, 34(1): 368–376.
Sudicky E.A. 2013. A Physically-Based Modelling Approach to Assess the Impact of Climate Change on Canadian Surface and Groundwater Resources. In: 3rd International HydroGeoSphere User Conference 2013. Neuchatel Switzerland.
Sulis M., Paniconi C., Rivard C., Harvey R. and Chaumont D. 2011. Assessment of climate change impacts at the catchment scale with a detailed hydrological model of surface-subsurface interactions and comparison with a land surface model. Water Resour Res, 47: W01513.
Sun F., Chen C., Wang W., Wu Y. and Lai G. 2011. Kolditz O Compartment approach for regional hydrological analysis: Application to the Meijiang catchment, China. IAHS-AISH Publication, In, 102–108.
Surfleet C.G., Tullos D., Chang H. and Jung I.W.2012. Selection of hydrologic modeling approaches for climate change assessment: A comparison of model scale and structures. J Hydrol, 464-465: 233–248.
Surfleet C.G. and Tullos D. 2013. Uncertainty in hydrologic modelling for estimating hydrologic response due to climate change (Santiam River, Oregon). Hydrol Process, 27: 3560–3576.
TanvirHassan. S.M., Maciek W., L., Richard G.N. and Zhongbo S.u.2014. Surface–groundwater interactions in hard rocks in Sardon Catchment of western Spain: An integrated modeling approach. Journal Hydrol, 517(19): 390–410.
Therrien R., McLaren R.G., Sudicky E.A. and Panday S.M .2009. HydroGeoSphere – a three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport. Groundwater Simulations Group.
Trudel M., Leconte R. and Paniconi C. 2014. Analysis of the hydrological response of a distributed physically-based model using post-assimilation (EnKF) diagnostics of streamflow and in situ soil moisture observations. J. Hydrol, 514: 192–201.
VanderKwaak J.E. 1999. Numerical simulation of flow and chemical transport in integrated surface-subsurface hydrologic systems. University of Waterloo, Thesis, 243.
Werner A.D., Gallagher M.R. and Weeks S.W. 2006. Regional-scale, fully coupled modelling of stream–aquifer interaction in a tropical catchment. J Hydrol, 328: 497–510.
White W.b. 1998. Geomorphology and hydrology of a karst terrains: Oxford University press.
Wilcox L.J., Bowman R.S. and Shafike N.G. 2007. Evaluation of Rio Grande Management Alternatives Using a Surface-Water/Ground-Water Model1. J Am Water Resour As, 43: 1595–1603.
Winter T.C., Harvey J.W., Franke O.L. and Alley W.M. 1998. Groundwater and surface water - a single resource, 1139. USGS.
WGMS and UNEP. 2008. Global glacier changs: facts and figures.
Wolf J., Barthel R. and Braun J. 2008. Modeling ground water flow in alluvial mountainous catchments on a watershed scale. Ground Water, 46: 695–705.
Zhou J., Hu B.X., Cheng G., Wang G. and Li X. 2011. Development of a three-dimensional watershed modeling system for water cycle in the middle part of the Heihe rivershed, in the west of China. Hydrol Process 25: 1964–1978.
Zhuoheng C., Stephen E., Grasby Kirk G. and Osadet Z. 2004. Relationship between climate variability and ground Water Levels in the upper carbonate aquifer southern, Manitoba, Canada. Journal of Hydrology, 290(1-2): 43-62.
CAPTCHA Image