Analysis of the Effect of Climatic Factors and Drought on Inflow and Outflow from the Khuzestan Plain in the Karun Basin

Document Type : Original Article/Regular article

Authors

1 PhD in Department of Desert Research, Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran

2 Associate Professor Department of Desert Research, Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran

3 Professor in Department of Botanical Researc, Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran

4 Assistant Professor, Desert Research Division, Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran.

5 Assistant Professor in Department of Desert Research, Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran

6 Researcher in Department of Desert Research, Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran

7 Assistant Professor in Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran

8 Assistant Professor in Department of Rangeland Research, Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran

Abstract

In recent years, the outflows from the Karun Basin, especially in the interior of Khuzestan province, have decreased significantly. This study aimed to investigate the effect of climatic factors and drought on the inflow and outflow of the Karun basin in two parts (basin area inside Khuzestan plain and basin area outside Khuzestan plain).  The results indicate the onset of adverse climate change during the last two decades. During this period, especially in the last ten years, the study has witnessed a large decrease in rainfall compared to the previous decade in the Karun Basin. Changes in average, minimum, and maximum temperatures, evaporation and drought have also increased during the last two decades. Also, the results related to the effect of climatic parameters on the output discharge of the Karun basin showed that in Khuzestan province 83% of the output discharge changes were affected by climatic parameters (including rainfall, drought, and maximum temperature, respectively) and outside Khuzestan, 82% of discharge changes are due to climatic parameters (including rainfall, maximum temperature, and drought, respectively). Meanwhile, the surface currents of the basin during the last decade have been more critical than other decades and the output discharge outside Khuzestan (input to the province) has decreased by about 27%, and inside the province and the output of the basin has decreased by 44%, which due to the almost identical effect of climate on both areas, these changes can be attributed to the existence of other factors, including land management and human factors.

Keywords


انصاری، م.، نوری، ج، و فتوحی، س. 1395. بررسی روند تغییرات دما، بارش و دبی با استفاده از آزمون ناپارامتری من کندال (مطالعه موردی: حوزه آبخیز رودخانه کاجو استان سیستان و بلوچستان). مجله تحقیقات آبخیزداری، 14(3): 152-158.
خسروی، م.، دوستکامیان، م.، میرموسوی، ح.، بیات، ع.، و بیگرضایی، ا. ١٣٩٣. طبقه‏ بندی دما و بارش در ایران زمین با استفاده از روش‏های زمین آمار و تحلیل خوشه ‏ای: فصلنامه برنامه‏ ریزی منطقه ‎ای، 4(13): 121-132.
خلیلی، ک.، احمدی، ف.، بهمنش، ج. و وردی‌نژاد، و. 1391.  بررسی تأثیر تغییر اقلیم بر روی دمای هوا و جریان رودخانه شهرچای واقع در غرب دریاچه ارومیه با استفاده از تحلیل روند و ایستایی. مجله علمی کشاورزی علوم مهندسی آبیاری، 35(4): 97-108.
خورشیددوست، ع.م. و شیرزاد، ع.ا. 1393. بررسی و تحلیل بارش‏ های ناحیه شمال ایران با استفاده از تحلیل خوشه‏ای و تجزیه تابع تشخیص. جغرافیا و برنامه ‏ریزی، 18(49): 101-118.
صمدی، ز. و مساح بوانی، ع. 1387. معرفی روش ‏های شبکه عصبی مصنوعی و SDSM به منظور کوچک مقیاس کردن آماری داده‏ های دما و بارندگی. سومین کنفرانس مدیریت منابع آب ایران. دانشگاه تبریز، تبریز.
عزتی، م.، شکوهی، ع.، لنگرودی، و.، سینگ. ج. پ.، و نوری، م. 1397. بررسی روند تغییرات دما و بارش و اثر آن بر پتانسیل منابع آب ورودی به سد طالقان. تحقیقات آب و خاک ایران، 49(4): 705-716. 
عساکره، ح. و دوستکامیان، م. 1396. ناحیه‌بندی اقلیمی آب قابل بارش جو ایران‌زمین. نشریه علمی جغرافیا و برنامه‌ریزی، 20(58): 181-202.
منتظری، م. و بای، ن. 1391. پهنه بندی اقلیم ناحیه خزری با استفاده از روش های آماری چند متغیره. مجله تحقیقات جغرافیایی، 27(2): 77-90.
واعظی هیر، ا.، ساری صراف،. ب و والائی، ا. 1395. بررسی علل کاهش جریان در رودخانه‌های شاخص جنوب‌شرق دریاچه ارومیه. فضای جغرافیایی، 16(53): 123-150.

Abatzoglou J.T., Barbero R., Wolf J.W. and Holden Z. 2014. Tracking interannual streamflow variability with drought indices in the Pacific Northwest, US. Journal of Hydrometeorology, 15:1900-1912.
Abatzoglou J.T., Dobrowski S.Z., Parks S.A. and Hegewisch K.C. 2018. Terraclimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Journal of Scientific Data, 5: 170191.
Amemiya T. 1980. Selection of regressors. International Economic Review, 21: 331-354.
Azami M., Sharifi H. and Alvandpur S. 2020. Evaluating the relationship between information literacy and evidence-based nursing and their impact on knowledge and attitude of nurses working in hospitals affiliated to Kerman University of Medical Sciences on medication errors. Journal of family medicine and primary care, 9(8): 4097–4106. 
Chen Y., Xu C., Hao X., Li W., Chen Y., Zhu C. and Ye Z. 2009. Fifty-year climate change and its effect on annual runoff in the Tarim River Basin. China. Quaternary International, 208(2): 53–61.
Darnius O. and Tarigan G. 2018. Simulation method of model selection based on Mallows’ Cp Criteria in linier regression. Journal of Physics: Conference Series, 1116(2): 022008.
Dibike Y.B. and Coulibaly P. 2005. Hydrologic impact of climate change in the Saguenay watershed:comparison of downscaling methods and hydrologic models. Journal of Hydrology, 307: 145-163.
Fowler H.J., Kilsb C.G. and Stunell J. 2007. Modeling the impacts of projected future climate change on water resources in north-west England. Hydrology and Earth System Sciences, 11(3): 1115-1126.
Kundzewicz Z., Merz B., Vorogushyn S., Hartmann, Heike & Duethmann, Doris & Wortmann, M. & Huang, Shaochun & Buda, Su & Jiang, Tianqi & Krysanova, Valentina. 2014. Analysis of changes in climate and river discharge with focus on seasonal runoff predictability in the Aksu River.
Ling H., Xu H. and Fu J. 2013. High- and low-flow variation in annual runoff and their response to climate change in the headstreams of the Tarim River, Xinjiang, China. Hydrological Process, 27: 975–988. 
Makridakis S., Wheelwright S.C. and Hyndman R.J. 1998. Forecasting methods and applications, New York, Wiley. Journal of the American Statistical Association, 94(445): 345-346.
Ostertagova E. 2012. Modelling using Polynomial Regression. Procedia Engineering, 48(2012): 500-506.
Palmer W.C. 1957. Drought a normal part of climatic. In. Weekly Weatherand Crop Bulletin, 44: 6–8.
Sankarasubramanian A., Vogel R.M. and Limburner J.F. 2001. Climate elasticity of stream flow in the United States. Water Resour. Res., 37(6): 1771-1781.
Sellinger E.C., Stow C.A., Lamon E.C. and Qian S. S. 2008. Recent Water Level declines in the Lake Michigan-Huron System. Enviromental Science & Technology, 42: 367–373.
Sembiring O. and Manurung A. 2019. Model selection in regression linear: a simulation based on akaike’s information criterion. Journal of Physics Conference Series, 1321:022085. 10.1088/1742-6596/1321/2/022085.
CAPTCHA Image