Document Type : Applied Article
Authors
1 Ph.D. in Hydrogeomorphology, Department of Physical Geography, Faculty of Geography, University of Tehran, Tehran, Iran
2 Ph.D. Student of Environmental Engineering, Department of Water Resources, Faculty of Environment, University of Tehran, Tehran, Iran
3 Associate Professor of Water Resources Engineering, Department of Physical Geography, Faculty of Geography, University of Tehran, Tehran, Iran
Abstract
The aim of this study is to estimate and analyze the spatiotemporal changes in the baseflow of 266 rivers across Iran in a 30-year period (1987-2017) in order to determine the degree of influence of groundwater sources and snowmelt in the studied rivers. The daily baseflows were separated from the streamflows recorded at the hydrometric stations using the Chapman-Maxwell digital filter method. A non-parametric Mann-Kendall test was used to analyze the baseflow time trend, and Moran's I spatial autocorrelation index was used to analyze the spatial autocorrelation of baseflow and baseflow index (baseflow ratio to streamflow). The monthly analysis of baseflow showed a regular seasonal pattern with the highest and lowest values of 9.08 and 1.95 million cubic meters per month, corresponding to the months of April and September, respectively. The results of the baseflow index showed that the share of baseflow in the surface water supply of the studied rivers is between 0.15% and 0.99% (72% on average). The results of the long-term trend of the baseflow indicated that 83.08% of the rivers experienced a significant downward trend (at a level of 0.95) in the studied period. The findings of the spatial autocorrelation test confirmed that there are several clusters with high baseflow and baseflow indexes in the Zagros and Alborz mountain ranges. The results of this research can provide a general picture of the temporal and spatial changes in the baseflow of rivers at the scale of the country and provide outstanding help to decision-makers in order to achieve integrated management of surface water resources.
Keywords
- River Baseflow
- Surface Water Resources
- Mann-Kendall Test
- Moran's I Spatial Autocorrelation
- Ecosystem Sustainability
Main Subjects
سازمان هواشناسی کشور و موسسه تحقیقات خاک و آب. (1398). نقشه خرد اقلیم کشاورزی ایران. www.irimo.ir / www.swri.ir
مهری، سونیا، مصطفیزاده، رئوف، اسمعلی عوری، اباذر، و قربانی، اردوان. (1396). مقایسه روشهای جداسازی جریان پایه رودخانه و تغییرات فصلی آن در تعدادی از آبخیزهای استان اردبیل. نشریه علمی حفاظت و بهرهبرداری از منابع طبیعی، 6(2)، 123-137. https://doi.org/10.22069/ejang.2019.11706.1327
Arciniega-Esparza, S., Breña-Naranjo, J. A., Pedrozo-Acuña, A., & Appendini, C. M. (2017). HYDRORECESSION: A Matlab toolbox for streamflow recession analysis. Computers & Geosciences, 98, 87-92. DOI: 10.1016/j.cageo.2016.10.005
Ayers, J. R., Villarini, G., Jones, C., & Schilling, K. (2019). Changes in monthly baseflow across the US Midwest. Hydrological processes, 33(5), 748-758. https://doi.org/10.1002/hyp.13359
Beck, H. E., Van Dijk, A. I., Miralles, D. G., De Jeu, R. A., Bruijnzeel, L. A., McVicar, T. R., & Schellekens, J. (2013) Global patterns in base flow index and recession based on streamflow observations from 3394 catchments. Water Resources Research, 49(12), 7843-7863. https://doi.org/10.1002/2013WR013918
Behling, R., Roessner, S., Foerster, S., Saemian, P., Tourian, M. J., Portele, T. C., & Lorenz, C. (2022). Interrelations of vegetation growth and water scarcity in Iran revealed by satellite time series. Scientific Reports, 12(1), 20784. https://doi.org/10.1038/s41598-022-24712-6
Brušková, V. (2008). Assessment of the base flow in the upper part of Torysa river catchment. Slovak Journal of Civil Engineering, 2, 8-14. https://www.svf.stuba.sk/buxus/docs/sjce/2008/2008_2/file2.pdf
Chapman, T. G., & Maxwell, A. I. (1996). Baseflow separation-comparison of numerical methods with tracer experiments. Hydrology and water resources symposium 1996: Water and the environment; preprints of papers. Conference Paper, 1 January 1996 (pp. 539-545). Barton, ACT: Institution of Engineers, Australia. https://search.informit.org/doi/10.3316/informit.360361071346753
Eckhardt, K. (2005). How to construct recursive digital filters for baseflow separation. Hydrological Processes: An International Journal, 19(2), 507-515. https://doi.org/10.1002/hyp.5675
Eckhardt, K. (2008). A comparison of baseflow indices, which were calculated with seven different baseflow separation methods. Journal of Hydrology, 352(1–2), 168–173. https://doi.org/10.1016/j.jhydrol.2008.01.005
ESA-WorldCover. (2020). Worldwide Land Cover Mapping: VITO NV.2021. https://es a-worldcover.org/en
Fallah Ghalhari, G. A., Dadashi Roudbari, A. A., & Asadi, M. (2016). Identifying the spatial and temporal distribution characteristics of precipitation in Iran. Arabian Journal of Geosciences, 9, 1-12. https://doi.org/10.1007/s12517-016-2606-4
Frederiksen, R. R., Christensen, S., & Rasmussen, K. R. (2018). Estimating groundwater discharge to a lowland alluvial stream using methods at point, reach, and catchment-scale. Journal of Hydrology, 564, 836–845. https://doi.org/10.1016/j.jhydrol.2018.07.036
Gregor, M. (2010). BFI+ 3.0 user’s manual. Department of Hydrogeology, Faculty of Natural Science, Comenius University. https://hydrooffice.org/Files/UM%20BFI.pdf
Hall, D. K., Riggs, G. A., Salomonson, V. V., DiGirolamo, N. E., & Bayr, K. J. (2002). MODIS snow-cover products. Remote sensing of Environment, 83(1-2), 181-194. https://doi.org/10.1016/S0034-4257(02)00095-0
Hamed, K. H. (2008). Trend detection in hydrologic data: the Mann–Kendall trend test under the scaling hypothesis. Journal of hydrology, 349(3-4), 350-363. https://doi.org/10.1016/j.jhydrol.2007.11.009
Kendall, D. G. (1948). On the generalized "birth-and-death" process. The Annals of Mathematical Statistics, 19(1), 1–15. https://doi.org/10.1214/aoms/1177730285
Klein, A. G., & Barnett, A. C. (2003). Validation of daily MODIS snow cover maps of the Upper Rio Grande River Basin for the 2000–2001 snow year. Remote Sensing of Environment, 86(2), 162-176. https://doi.org/10.1016/S0034-4257(03)00097-X
Li, L., Maier, H. R., Lambert, M. F., Simmons, C. T., & Partington, D. (2013). Framework for assessing and improving the performance of recursive digital filters for baseflow estimation with application to the Lyne and Hollick filter. Environmental Modelling & Software, 41, 163–175. https://doi.org/10.1016/j.envsoft.2012.11.009
Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the Econometric Society, 245–259. https://doi.org/10.2307/1907187
Moran, P. A. (1950). Notes on continuous stochastic phenomena. Biometrika, 37(1/2), 17-23. https://doi.org/10.1093/biomet/37.1-2.17
Parizi, E., Bagheri-Gavkosh, M., Hosseini, S. M., & Geravand, F. (2021). Linkage of geographically weighted regression with spatial cluster analyses for regionalization of flood peak discharges drivers: Case studies across Iran. Journal of Cleaner Production, 310, 127526. https://doi.org/10.1016/j.jclepro.2021.127526
Partington, D., Brunner, P., Simmons, C. T., Werner, A. D., Therrien, R., Maier, H. R., & Dandy, G. C. (2012). Evaluation of outputs from automated baseflow separation methods against simulated baseflow from a physically based, surface water-groundwater flow model. Journal of Hydrology, 458, 28–39. https://doi.org/10.1016/j.jhydrol.2012.06.029
Qin, H., Huang, Q., Zhang, Z., Lu, Y., Li, M., Xu, L., & Chen, Z. (2019). Carbon dioxide emission driving factors analysis and policy implications of Chinese cities: Combining geographically weighted regression with two-step cluster. Science of the Total Environment, 684, 413-424. DOI: 10.1016/j.scitotenv.2019.05.352
Rumsey, C. A., Miller, M. P., Susong, D. D., Tillman, F. D., & Anning, D. W. (2015). Regional scale estimates of baseflow and factors influencing baseflow in the Upper Colorado River Basin. Journal of Hydrology: Regional Studies, 4, 91–107. https://doi.org/10.1016/j.ejrh.2015.04.008
Salas, J. D. (1980). Applied modeling of hydrologic time series. Water Resources Publication, Littleton, Colorado.
Santhi, C., Allen, P. M., Muttiah, R. S., Arnold, J. G., & Tuppad, P. (2008). Regional estimation of base flow for the conterminous United States by hydrologic landscape regions. Journal of Hydrology, 351(1-2), 139-153. https://doi.org/10.1016/j.jhydrol.2007.12.018
Shi, X., Qin, T., Nie, H., Weng, B., & He, S. (2019). Changes in major global river discharges directed into the ocean. International Journal of Environmental Research and Public Health, 16(8), 1469. https://doi.org/10.3390/ijerph16081469
Sloto, R. A., & Crouse, M. Y. (1996). HYSEP: A computer program for streamflow hydrograph separation and analysis. Water-resources investigations report, 96, 4040. https://doi.org/10.3133/wri964040
Stewart, M., Cimino, J., Ross, M. (2007). Calibration of base flow separation methods with streamflow conductivity. Groundwater, 45, 17–27. https://doi.org/10.1111/j.1745-6584.2006.00263.x
Tan, X., Liu, B., & Tan, X. (2020). Global changes in baseflow under the impacts of changing climate and vegetation. Water Resources Research, 56(9), e2020WR027349. https://doi.org/10.1029/2020WR027349
Werner, A. D., Gallagher, M. R., Weeks, S. W. (2006). Regional-scale, fully coupled modelling of stream–aquifer interaction in a tropical catchment. Journal of Hydrology, 328, 497-510. https://doi.org/10.1016/j.jhydrol.2005.12.034
Send comment about this article