Document Type : Applied Article
Authors
1 Department of Water Engineering, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
2 Department of Irrigation and Reclamation Engineering, Faculty of Agriculture, University of Tehran, Karaj, Iran
Abstract
Today, the optimal use of water in various sections to increase productivity and reduce losses is one of the basic assumptions in consumption management. Therefore, in the present research, the concept of productivity in different water consumption sections, including groundwater, drinking water, and special attention to chemical properties in the sewage treatment plant in Sari City has been investigated. In each section, using the appropriate algorithm, the available data has been evaluated to measure productivity. In the sewage treatment section, the analysis of effective parameters in Sari City sewage treatment was performed in two methods Artificial Neural Network and Wavelet. The output results of these models showed that due to the high value of the R2 statistic, there is an acceptable and direct relationship between the measured and estimated characteristics. In the groundwater sector, according to the results obtained, the wavelet network performed better in estimating the desired variables than the ANN method. In the water distribution network section, the results of wavelet analysis and the outputs of the WaterGems software revealed that the deterioration of the studied water distribution network plays a significant role in losses and reduced productivity, in such a way that about 47 percent of the water entering the network is out of reach and wasted in different ways.
Keywords
Main Subjects
امامی، سمیه، و چوپان، یحیی. (1399). استفاده از روشهای نوین هوش مصنوعی در بررسی کیفیت منابع آب زیرزمینی در دشت سلماس. زمینشناسی محیطزیست، 14(50)، 39-55.
صادقی، حمیدرضا، محمودی، بهروز، و پیشوائی، سامان. (1401). شیوهنامه تعیین و سنجش نماگرهای بهرهوری استانها. انتشارات سازمان ملی بهرهوری ایران، تهران، ایران
محمودی، بهروز، صادقی، حمیدرضا، و خاکسار، سمانه (1400). سیمای بهرهوری ایران، انتشارات سازمان ملی بهرهوری ایران. تهران، ایران.
وجاهت، جواد، صراف، شادی. (1400). بررسی تاثیرات یکپارچهسازی هیدرولیکی و تعیین شاخص تابآوری و بهرهوری سامانههای شبکه توزیع آب. پژوهشهای مهندسی آب ایران، 1(1)، 15-25. doi: 10.22034/ijwer.2022.301276.1002
Alam, G., Ihsanullah, I., Naushad, M., & Sillanpää, M. (2022). Applications of artificial intelligence in water treatment for optimization and automation of adsorption processes: Recent advances and prospects. Chemical Engineering Journal, 427, 130011. doi: 10.1016/j.cej.2021.130011
Kisi, O., & Cimen, M. (2012). Precipitation forecasting by using wavelet-support vector machine conjunction model. Engineering Applications of Artificial Intelligence, 25(4), 783-792. doi: 10.1016/j.engappai.2011.11.003
Legg, S., & Hutter, M. (2007). A collection of definitions of intelligence. Frontiers in Artificial Intelligence and applications, 157, 17.
Liu, E., Wen, D., Peng, S., Sun, H., & Yang, Y. (2017). A study of the numerical simulation of water hammer with column separation and cavity collapse in pipelines. Advances in Mechanical Engineering, 9(9), 1687814017718124. doi: 10.1177/1687814017718124
Rizal, N. N. M., & Hayder, G. (2023). Forecasting effluent biochemical oxygen demand in sewage treatment plants using machine learning and user-friendly interface. International Journal of Environmental Research, 17(1), 4. doi: 10.1007/s41742-022-00493-8
Seyoum, A. G., & Tanyimboh, T. T. (2017). Integration of hydraulic and water quality modelling in distribution networks: EPANET-PMX. Water Resources Management, 31, 4485-4503. doi: 10.1007/s11269-017-1760-0
Taşan, S. (2023). Estimation of groundwater quality using an integration of water quality index, artificial intelligence methods and GIS: Case study, Central Mediterranean Region of Turkey. Applied Water Science, 13(1), 15. doi: 10.1007/s13201-022-01810-4
Send comment about this article