Methodology for Groundwater Monitoring Network Assessment and Design, Part 1: Observation-Wells Condition Evaluation; Case Study: Shirvan Aquifer, North Khorasan, Iran

Document Type : Applied Article

Authors

1 Assistant Professor, Department of Water Science and Engineering, Kashmar Higher Education Institute, Kashmar, Iran

2 Faculty member, Hydroinformatics Department, East Water and Environmental Research Institute (EWERI), Mashhad, Iran

3 Manager of Water Resources Basic Studies, Regional Water Authority of North Khorasan, Bojnord, Iran

4 Expert of Water Resources Basic Studies, Regional Water Authority of North Khorasan, Bojnord, Iran

Abstract

Groundwater level monitoring networks already exist in most alluvial aquifers in Iran. A question needs to be answered as to what extent networks are able to provide proper information about the groundwater resources to meet the water resources management objectives. Therefore, it is necessary to evaluate the efficiency of the existing monitoring network and redesign it if necessary.  This study has attempted to assess the condition of existing observation wells and the relationship between the wells and the aquifer by combining hydrogeological information and the results of a well-video inspection. Hydrogeological studies can reveal that the observation wells were drilled in which hydro-geological sequence (hydrofacies) and the external factors influence water level fluctuations. Moreover, observation well's video inspection operations, performed for the first time in Iran, can show the condition of the well casing and screen and the water-column length. The proposed framework was applied to evaluate the groundwater-level observation  well's efficiency in Shirvan alluvial aquifer in North Khorasan province, Iran. The results showed that out of 17 observation wells in the aquifer, one well is not placed into the main aquifer, six observation wells need to be rehabilitated due to screen clogging and three observation wells are at risk of going dry.

Keywords

Main Subjects


شرکت آب منطقه‌ای خراسان شمالی. 1395. گزارش تمدید ممنوعیت دشت قوچان-شیروان. 
شرکت مدیریت منابع آب ایران. 1399. خلاصه وضعیت سطح آب‌زیرزمینی و حجم مخزن آبخوان‌های آبرفتی کشور- منتهی به سال آبی 99-1398، دفتر مطالعات پایه منابع آب، تهران.
شفیعی، م.، قهرمان، ب. و ثقفیان، ب. 1392. ارزیابی و بهینه‌یابی شبکه ایستگاه‌های باران‌سنجی بر مبنای روش کریجینگ احتمالی (مطالعه‌ی موردی: حوضه‌ی گرگانرود)، تحقیقات منابع آب ایران، 9(2): 9-18. 
گنجی خرم دل، ن.، کیخایی، ف. و مردیان، م. 1394. طراحی و توسعه شبکه پایش سطح آب زیرزمینی با استفاده از زمین‌آمار و روش‌های آماری در دشت اراک. مجله ژئوفیزیک ایران، 9(3): 17-29.
معاونت برنامه ریزی و نظارت راهبردی رئیس‌جمهور. 1392. نشریه شماره 577- دستورالعمل تعیین محل و نظارت بر حفر چاه‌های آب در آبرفت و سازندهای سخت و تهیه گزارش حفاری (چاه‌های بهره‌برداری اکتشافی، پیزومترها و مشاهده‌ای)، تهران.
معاونت برنامه‌ریزی و نظارت راهبردی رئیس‌جمهور. 1393. نشریه شماره 665- دستورالعمل رفتارسنجی کمی آب‌های زیرزمینی، تهران. 
ASTM D5978/D5978M-16 2016. Standard Guide for Maintenance and Rehabilitation of Groundwater Monitoring Wells. ASTM International. West Conshohocken, United States.
Bhat S., Motz L.H. and Pathak, C. 2015. Geostatistics-based groundwater-level monitoring network design and its application to the Upper Floridan aquifer, USA. Environ. Monit. Assess, 187: 4183. http://dx.doi.org/10.1007/s10661-014-4183-x.
Bierkens M.F.P. 2006. Designing a monitoring network for detecting groundwater pollution with stochastic simulation and a cost model. Stoch Environ Res Ris Assess, 20: 335–351.
Farlin J., Galle T., Pittois D., Bayerle M. and Schaul T. 2019. Groundwater quality monitoring network design and optimisation based on measured contaminant concentration and taking solute transit time into account, Journal of Hydrology, 573: 516-523.
Ghorbani M., Liltved H., Reza Nikoo M., Hindar A. and Meland, S. 2020. Assessing optimal water quality monitoring network in road construction using integrated information-theoretic techniques. Journal of Hydrology, 589: 125366.
Izady A, Davary K, Alizadeh A, Ziaei A.N., Alipoor A., Joodavi A. and Brusseau M.L. 2014. A framework toward developing a groundwater conceptual model. Arabian Journal of Geosciences, 7(9): 3611-3631.
Loáiciga H., Charbeneau R.J., Everett L.G., Fogg G.E., Hobbs B.F. and Rouhani, S. 1992. Review of ground-water quality monitoring network design. Journal of Hydraulic Engineering, 118(1): 11–37.
Manzione R.L., Wendland E. and Tanikawa D.H. 2012. Stochastic simulation of timeseries models combined with geostatistics to predict water-table scenarios in a Guarani Aquifer System outcrop area, Brazil. Hydrogeology Journal, 20 (7): 1239–1249.
Pearson S., Falteisek J. and Berg J. 2011. Minnesota Groundwater Level Monitoring Network- Guidance Document for Network Development. Minnesota, United States.
Ran Y., Li X., Lu X. and Lian, Y. 2015. Optimal selection of groundwater-level monitoring sites in the Zhangye Basin. Northwest China. Journal of Hydrology, 525: 209– 215.
International Groundwater Resources Assessment Centre (IGRAC) 2008. Guideline on Groundwater monitoring for general reference purposes (Report nr. GP 2008-1), Utrecht, Netherlands.
Thakur J.K. 2017. Hydrogeological modeling for improving groundwater monitoring network and strategies. Applied Water Science, 7: 3223–3240.
USGS 2013. A National Framework for Ground-Water Monitoring in the United States. USGS Office of Water Information, Reston.
Van Lanen H.A. 1998. Monitoring for groundwater management in (semi)-arid regions. Unesco.
Varouchakis E.A., and Hristopulos D.T. 2013. Comparison of stochastic and deterministic methods for mapping groundwater level spatial variability in sparsely monitored basins. Environmental Monitoring and Assessment, 185(1): 1–19. 
Wu S.C., Ke K.Y., Lin H.T. and Tan Y.C. 2017. Optimization of Groundwater Quality Monitoring Network Using Risk Assessment and Geostatistic Approach. Water Resources Management, 31: 515–530.
Zhou Y., Dong D., Liu J. and Li W. 2013. Upgrading a regional groundwater level monitoring network for Beijing Plain, China. Geoscience Frontiers, 4(1): 127–138.
CAPTCHA Image