مروری بر مفاهیم مدل‌سازی هیدرولوژی : بخش دوم، مبانی تحلیل عدم قطعیت‌

نوع مقاله : مروری

نویسندگان

1 مرکز پژوهشی آب و محیط زیست شرق

2 دانشگاه فردوسی مشهد

3 دانشگاه آزاد اسلامی، واحد علوم تحقیقات تهران

چکیده

امروزه به سبب وجود منابع متعدد خطا و نااطمینانی، تحلیل عدم قطعیت به‌عنوان بخشی جدانشدنی در مدل‌سازیِ‌‌ هیدرولوژی پذیرفته شده است. بررسی و به کمیّت درآوردن میزان عدم قطعیت در نتایج پیش‌بینی مدل‌ها، مهم‌ترین گام، قبل از استفاده از نتایج مدل‌ها در تصمیم‌گیری‌های منابع آب است. کمّی‌سازی میزان عدم قطعیت در مدل‌های هیدرولوژی به صورت توأم و همراه با واسنجی مدل انجام می‌شود. بنابراین لزوم توجه به واسنجی مدل و ارتباط آن با تحلیل عدم قطعیت در مدل‌سازی،‌‌ ضروری است. مقاله مروری حاضر با هدف ارائه تعاریف و مفاهیم اولیه و ضروری در تحلیل عدم قطعیت مدل‌ها و ارتباط آن با فرآیند مدل‌سازی‌‌ هیدرولوژی تدوین شده است.

کلیدواژه‌ها


پوررضا بیلندی، م.، آخوند علی، ع.، قهرمان، ب. و تلوری، ع. 1393. ارزیابی دو الگوریتم مختلف مونت‌کارلو زنجیر‌مارکف در تحلیل عدم قطعیت پارامترهای مدل توزیعی هیدرولوژیکی. نشریه پژوهش‌های حفاظت آب و خاک. 21(5): 1-26.
شفیعی، م.، انصاری، ح.، داوری، ک. و قهرمان، ب. 1392. واسنجی و تحلیل عدم‌قطعیت یک مدل نیمه‌توزیعی در یک منطقه ‌نیمه‌خشک. مجله علوم و فنون کشاورزی و منابع طبیعی(علوم آب و خاک)، 17(64): 137-148.
شفیعی، م.، قهرمان، ب.، ثقفیان، ب.، داوری، ک. و وظیفه‌دوست، م. 1393. واسنجی و تحلیل عدم قطعیت مدل SWAP توسط روش GLUE. مجله پژوهش آب در کشاورزی، 28(2): 477-488.
شفیعی، م. و قراری، ش. 1396. مروری بر مفاهیم مدل‌سازی هیدرولوژی: بخش اول، معرفی فرآیند مدل‌سازی. نشریه آب و توسعه پایدار، 4(2): 95-102.
Abbaspour K.C., Schulin R. and van Genuchten M.T. 2001. Estimating unsaturated soil hydraulic parameters using ant colony optimization. Adv. Water Resour, 24: 827–841.
Bates B.C., and Campbell E.P. 2001. A Markov chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfall - runoff model-ing, Water Resour. Res., 37(4): 937–947.
Beven K. and Binley A. 1992. The future of distributed models: Model calibration and uncertainty prediction. Hydrol. Process, 6: 279–298.
Doherty J. 1994. PEST: a unique computer program for model-independent parameter optimisation. Water Down Under 94 Groundwater/Surface Hydrol. Common Interes. Pap. Prepr. Pap. 551.
Duan Q., Sorooshian S. and Gupta V. 1992. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resources Research, 28(4): 1015-1031.
Ines A.V.M. and Droogers P. 2002. Inverse modelling in estimating soil hydraulic functions: a Genetic Algorithm approach. Hydrol. Earth Syst. Sci, 6: 49–66.
Kundzewicz Z. 1995. Hydrological uncertainty in perspective. In: Z. Kundzewicz (ed.), New Uncertainty Concepts in Hydrology and Water Resources, University Press, Cambridge, UK, 3-10.
Malakoff D. 1999. Bayes offers a ‘New’ way to make sense of numbers. Science, 286: 1460–1464.
McKay M.D., Beckman R.J. and Conover W.J. 1979. Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21: 239–245.
Merriam-Webster. 2003. Merriam Webster Online Dictionary. Retrieved May 26, 2003 from http://www.merriam-webster.com
Refsgaard J.C. and Knudsen J. 1996. Operational validation and intercomparison of different types of hydrological models. Water Resource Research, 32(7): 2189–2202.
Refsgaard J.C., van der Sluijs J.P., Højberg A.L. and Vanrolleghem P. 2007. Uncertainty in the environmental modelling process – A framework and guidance. Environ. Model. Softw, 22: 1543–1556.
Ross T.J. 1995. Fuzzy logic with engineering applications. McGraw-Hill, New York, NY, USA.
Schoups G., Van de Giesen N. and Savenije H. 2008. Model complexity control for hydrologic prediction. Water Resources Research, 44, W00B03, doi: 10.1029/2008WR006836.
Shafiei M., Ghahraman B., Saghafian B., Davary K., Pande S. and Vazifedoust M. 2014. Uncertainty assessment of the agro-hydrological SWAP model application at field scale: A case study in a dry region. Agricultural Water Management, 146: 324-334.
Tung Y. and Yen B. 2006. Hydrosystem engineering uncertainty analysis. McGraw-Hill Book Company, NY, USA.
Zhang D., Beven K. and Mermoud A., 2006. A comparison of non-linear least square and GLUE for model calibration and uncertainty estimation for pesticide transport in soils. Adv. Water Resour, 29: 1924–1933.
CAPTCHA Image