بهینه‏‌سازی سامانه‏‌های کنترل سیلاب با ترکیب برنامه‌‏ریزی پویای گسسته دیفرانسیلی و الگوریتم ژنتیک

نوع مقاله : پژوهشی بنیادی

نویسندگان

1 دانشگاه شهید بهشتی

2 شهیدبهشتی

چکیده

نوع مقاله: پژوهشی/مطالعه موردی
پژوهش حاضر به طرح بهینه یکی از روش‏‌های سازه‏ای کنترل سیلاب (گوره‌‏ها) بر مبنای برنامه‌‏ریزی پویا (DP) پرداخته است. به‌‏منظور تسریع زمان محاسبات، مدلی بر اساس ترکیب برنامه‏‌ریزی پویای گسسته دیفرانسیلی و الگوریتم ژنتیک (GA-DDDP) ایجاد شد. تابع هدف این مدل کمینه کردن هزینه کل شامل هزینه احداث سازه و خسارت باقیمانده می‏‌باشد. به‏‌این‏‌منظور، طول رودخانه مورد مطالعه به سه بازه تقسیم شد و ابعاد بهینه چهار مقطع آب‏گذری به‏‌عنوان نتایج خروجی به‏دست آمد. مدل‏‌سازی و اجرای آن با کدنویسی در نرم‏‌افزار متلب انجام شد و نتایج نشان داد زمان اجرای مدل ترکیبی GA-DDDP تنها 11 درصد زمان اجرای مدل برنامه‏‌ریزی پویای کلاسیک می‏باشد. همچنین در این مطالعه، نتایج مدل چهارمقطعی با مدل ساده‌‏تر تک‏‌مقطعی (مقطع معادل) مقایسه شد. نتایج حاکی از آن است که ساده‏‌سازی مسئله به حالت تک مقطعی، افزایش هزینه‌‏ها (حدود 20 درصد) را به دنبال دارد.

کلیدواژه‌ها


علیمحمدی، س.، رفیعی انزاب، ن. و مرادی، م. 1392. طراحی خاکریزهای کنار رودخانه (گوره‏ها) به روش آنالیز ریسک، مجله آب و فاضلاب، 25(89): 95-110.
Behrouz M. and Alimohammadi S. 2016. Risk-based design of flood control systems considering multiple dependent uncertainties. Water resources management, 30(13): 4529-4.
Behrouz M. and Alimohammadi S. 2018. Uncertainty analysis of flood control measures including epistemic and aleatory uncertainties: Probability theory and evidence theory. Journal of Hydrologic Engineering, 23(8): 04018033.
Cheng C., Wang S., Chau K. W. and Wu X. 2014. Parallel discrete differential dynamic programming for multireservoir operation. Environmental modelling & software, 57: 152-164.
Chow V.T., Maidment D.R. and Tauxe G.W. 1975. Computer time and memory requirements for DP and DDDP in water resource systems analysis. Water Resources Research , 11(5): 621-628.
Coley D.A. 1999. An introduction to genetic algorithms for scientists and engineers. World Scientific Publishing Company.university of Exeter South West England, United Kingdom.
Corry M.L. and Jones J.S. 1981. Design of Encroachments on Flood Plains Using Risk Analysis, Appendixe A, Risk Analysis Sample Problem-U.S.11 Crossing Leaf River at Hattiesburg, Ms.
Feng Z.K., Niu W.J., Cheng C. T.and Liao S.L. 2017. Hydropower system operation optimization by discrete differential dynamic programming based on orthogonal experiment design. Energy, 126: 720-732.
Florsheim J.L. and Dettinger M.D. 2007. Climate and floods still govern California levee breaks. Geophysical Research Letters, 34(22): L22403, doi:10.1029/2007GL031702, 2007
Goldberg D.E. and Richardson J. 1987. Genetic algorithms with sharing for multimodal function optimization. In Genetic algorithms and their applications: Proceedings of the Second International Conference on Genetic Algorithms (41-49). Hillsdale NJ: Lawrence Erlbaum.
Hall W.A. 1964. Optimum design of a multiple-purpose reservoir, Journal of the Hydraulics Division, 1964,90(4): 141-149
Heidari M., Chow V.T., Kokotović P. V.and Meredith D. D. 1971. Discrete differential dynamic programing approach to water resources systems optimization. Water Resources Research, 7(2): 273-282.
Hillier F.S. and Lieberman G.J. 2012. Introduction to operations research. McGraw-Hill Science, Engineering & Mathematics. Published by the Tata McGraw Hill Education Private Limited, 7 West Patel Nagar, New Delhi 110 008, Typeset at The Composers, 260, C.A. Apt., Paschim Vihar, New Delhi 110 063 and printed at India Binding House, A-98, Sector - 65, Noida, U.P.
Hsieh C.D. and Yang W.F. 2007. Optimal nonpoint source pollution control strategies for a reservoir watershed in Taiwan. Journal of environmental management, 85(4): 908-917.
Huang W.C., Yuan L.C. and Lee C.M. 2002. Linking genetic algorithm with stochastic dynamic programming to the long‐term operation of a multireservoir system. Water Resources Research, 38(12): 1-40.
Hui R., Jachens E. and Lund J. 2016. Risk‐based planning analysis for single levee. Water Resources Research, 52(4): 2513-2528.
Jamshidi M. and Heidari M. 1977. Application of dynamic programming to control Khuzestan water resources system. Automatica, 13(3): 287-293.
Kai W., Deyi C. and Zhaohui Y. 2016. Flood control and management for the transitional Huaihe River in China. Procedia Engineering, 154(2016): 703-709.
Li G. and Matthew R.G. 1990. New approach for optimization of urban drainage systems. Journal of Environmental Engineering, 116(5): 927-944.
Li C., Zhou J., Ouyang S., Ding X. and Chen L. 2014. Improved decomposition–coordination and discrete differential dynamic programming for optimization of large-scale hydropower system. Energy Conversion and Management, 84: 363-373.
Mays L.W. and Yen B.C. 1975. Optimal cost design of branched sewer systems. Water Resources Research, 11(1): 37-47.
Rao S.S. 2009. Engineering optimization: theory and practice. John Wiley & Sons.university of miami Caral gables, Florida.
Shafiei M., Bozorg Haddad O. and Afshar A. 2005. GA in optimizing Ajichai flood levee’s encroachment.Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005: 392-399.
John B. Storm 2012. Flood-Inundation Maps for the Leaf River Hattiesburg , Mississippi , U.S.Geological Survey, Reston, Virginia
Tospornsampan J., Kita I., Ishii M. and Kitamura Y. 2005. Optimization of a multiple reservoir system operation using a combination of genetic algorithm and discrete differential dynamic programming: a case study in Mae Klong system, Thailand. Paddy and Water Environment, 3(1): 29-38.
Tung Y.K. and Mays L.W. 1981. Optimal risk based design of flood levee systems. Water Resources Research, 17(4): 843-852.
U.S.Army Corps of Engineers. 1991. Hydraulic Design of Flood Control Channels.
Wilson K.V. 1966 Flood frequency of streams in Jackson, Mississippi, open file report, 6 pp., U.S. Geol. Surv., Jackson, Miss.
Yakowitz S. 1982. Dynamic programming applications in water resources. Water resources research, 18(4): 673-696.
Zhu T. and Lund J.R. 2009. Up or out? economic-engineering theory of flood levee height and setback. Journal of Water Resources Planning and Management, 135(2): 90-95.
https://www.researchgate.net/
https://pubs.usgs.gov/sim/3228/
CAPTCHA Image