روش برنامه‏‏‌نویسی ژنتیک (GP) در پیش‌‏بینی میزان مصرف آب شهری (مطالعه موردی: شهر نجف آباد)

نوع مقاله : پژوهشی کاربردی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی و مدیریت منابع آب، گروه عمران، دانشکده مهندسی عمران حمل و نقل، دانشگاه اصفهان، اصفهان، ایران

2 دانشیار، گروه عمران، دانشکده مهندسی عمران حمل و نقل، دانشگاه اصفهان، اصفهان، ایران

چکیده

ارتقا سطح کیفی زندگی ساکنین شهرها به بهره‌مندی از زیرساخت شهری با کیفیت بالا، به‏ منظور برآورده کردن نیازهای روزانه وابسته است. شبکه آبرسانی شهری یکی از اساسی‌ترین زیرساخت‌‏های شهری است که طراحی و سرویس‌‏دهی مطلوب آن در طول دوره طرح ضروری است. ازاین ‏رو تعیین میزان واقعی مصرف و پیش‌‏بینی آن در آینده اهیمت دارد. به‏ این ‏منظور در این تحقیق، از یک روش بر مبنای هوش مصنوعی، روش برنامه‌‏نویسی ژنتیک (GP) و همچنین روش داده‏‌کاوی ضریب هم‏بستگی پیرسون استفاده شده است. روش‌‏های داده‏‌کاوی بر روی بانک داده شامل داده‏‌های روزانه دما، بارش، رطوبت و مقدار آب تولیدی روزانه برای شهر نجف‌آباد در اصفهان از ابتدای سال 1394 تا انتهای سال 1398اعمال و بهترین ترکیب از داده‌‏های ورودی انتخاب شده است. داده‏‌های منتخب به ‏عنوان بردارهای ورودی برای مدل‏‌های پیشنهادی بر مبنای روش GP اعمال و مقدار آب تولیدی روزانه (نشان‏‌دهنده آب مصرفی کل)شهر نجف آباد پیش‌بینی شده است. نتایج به ‏دست آمده با نتایج مدل‏‌هایی بر مبنای شبکه عصبی مصنوعی (ANN) مقایسه شده است. برای بررسی عملکرد مدل‏‏‌ها، شاخص‌‏های آماری R²، RMSE و NSE محاسبه شده است. مقایسه نتایج نشان‌‏دهنده عملکرد قابل قبول مدل‏‌های پیشنهادی بر مبنای GP می‏‌باشد. به ‏عبارت ‏دیگر، مقدار شاخص‌های آماری RMSE و NSE و R² و MAPE برای داده‌‏های آموزش در بهترین مدل GP به‌ترتیب برابر با MCM 3262/59  و 0/80 و 0/80 و 5/38 درصد و برای داده‏‌های آزمایش به ترتیب برابر با 3507/68 MCM و  78/78 و 0/0 و 6/67 درصد می‏‌باشد.

کلیدواژه‌ها

موضوعات


Barati, R., Salehi Neyshabouri, S. A. A., & Ahmadi, G. (2014). Development of empirical models with high accuracy for estimation of drag coefficient of flow around a smooth sphere: An evolutionary approach. Powder Technology, 257, 11-19. doi: 10.1016/j.powtec.2014.02.045
Brentan, B. M., Luvizotto Jr, E., Herrera, M., Izquierdo, J., & Pérez-García, R. (2017). Hybrid regression model for near real-time urban water demand forecasting. Journal of Computational and Applied Mathematics, 309, 532-541. doi: 10.1016/j.cam.2016.02.009
Goodarzi, M., Abedi-Koupai, J., Heidarpour, M., & Safavi, H. R. (2016). Evaluation of the Effects of Climate Change on Groundwater Recharge Using a Hybrid Method. Water Resources Management, 30(1), 133-148. doi: 10.1007/s11269-015-1150-4
Kazemi, M., & Barati, R. (2022). Application of dimensional analysis and multi-gene genetic programming to predict the performance of tunnel boring machines. Applied Soft Computing, 124, 108997. doi: 10.1016/j.asoc.2022.108997
Kühnert, C., Gonuguntla, N. M., Krieg, H., Nowak, D., & Thomas, J. A. (2021). Application of LSTM Networks for Water Demand Prediction in Optimal Pump Control. Water, 13(5), 644. doi: 10.3390/w13050644
Lee, M., Tansel, B., & Balbin, M. (2011). Influence of residential water use efficiency measures on household water demand: A four year longitudinal study. Resources, Conservation and Recycling, 56(1), 1-6. doi: 10.1016/j.resconrec.2011.08.006
Pacchin, E., Gagliardi, F., Alvisi, S., & Franchini, M. (2019). A Comparison of Short-Term Water Demand Forecasting Models. Water Resources Management, 33(4), 1481-1497. doi: 10.1007/s11269-019-02213-y
Polebitski Austin, S., & Palmer Richard, N. (2010). Seasonal Residential Water Demand Forecasting for Census Tracts. Journal of Water Resources Planning and Management, 136(1), 27-36. doi: 10.1061/(ASCE)WR.1943-5452.0000003
Romano, G., Salvati, N., & Guerrini, A. (2014). Estimating the Determinants of Residential Water Demand in Italy. Water, 6, 2929–2945. doi: 10.3390/w6102929
Sebri, M. (2016). Forecasting urban water demand: A meta-regression analysis. Journal of Environmental Management, 183, 777-785. doi: 10.1016/j.jenvman.2016.09.032
Shabani, S., Candelieri, A., Archetti, F., & Naser, G. (2018). Gene expression programming coupled with unsupervised learning: a two-stage learning process in multi-scale, short-term water demand forecasts. Water, 10(2), 142. doi: 10.3390/w10020142
Shuang, Q., & Zhao, R. T. (2021). Water Demand Prediction Using Machine Learning Methods: A Case Study of the Beijing–Tianjin–Hebei Region in China. Water, 13(3), 310. doi: 10.3390/w13030310
Silva, S., & Almeida, J. (2003). Gplab–a genetic programming toolbox for matlab. In: Proceedings of the Nordic MATLAB Conference. Copenhagen, Denmark.
Smolak, K., Kasieczka, B., Fialkiewicz, W., Rohm, W., Siła-Nowicka, K., & Kopańczyk, K. (2020). Applying human mobility and water consumption data for short-term water demand forecasting using classical and machine learning models. Urban Water Journal, 17(1), 32-42. doi: 10.1080/1573062X.2020.1734947
Suero Francisco, J., Mayer Peter, W., & Rosenberg David, E. (2012). Estimating and Verifying United States Households’ Potential to Conserve Water. Journal of Water Resources Planning and Management, 138(3), 299-306. doi: 10.1061/(ASCE)WR.1943-5452.0000182
Xenochristou, M., & Kapelan, Z. (2020). An ensemble stacked model with bias correction for improved water demand forecasting. Urban Water Journal, 17(3), 212-223. doi: 10.1080/1573062X.2020.1758164
CAPTCHA Image
دوره 10، شماره 3 - شماره پیاپی 29
حکمرانی سیل از «مهار توسط دولت» تا «تاب‌آوری جوامع محلی»
آذر 1402
صفحه 87-98
  • تاریخ دریافت: 30 خرداد 1402
  • تاریخ بازنگری: 05 شهریور 1402
  • تاریخ پذیرش: 14 شهریور 1402