معرفی پایگاه های بارش شبکه بندی شده جهانی

نوع مقاله : مقاله علمی- ترویجی

نویسندگان

دانشگاه تهران

چکیده

کمبود اطلاعات بارش همواره یکی از محدودیت‏ های اصلی تحقیقات و مطالعه در زمینه‏ مهندسی آب و هواشناسی بوده است. به ‏این‏ دلیل محققین و مهندسین همواره به دنبال یک جایگزین و یا مکمل برای به ‏دست ‏آوردن اطلاعات حاصل از ایستگاه‏ه ای باران‏سنجی زمینی بوده ‏اند. امروزه پایگاه‏ های بارش شبکه ‏بندی شده جهانی یکی از گزینه‏ های اصلی و معتبر این کمبود است. پایگاه‏ های بارش جهانی اطلاعات از منابع مختلف شامل ایستگاه ‏های زمینی، اطلاعات سنجش از دور و مدل‏ه ای عددی بارش را به‏ صورت شبکه‏ بندی منطقه ‏ای و یا جهانی را در اختیار قرار می‏ دهند. گام اول برای استفاده از اطلاعات این پایگاه‏ ها آشنایی با انواع پایگاه‏ های بارش شبکه‏ بندی شده و گام دوم انتخاب مناسب‏ ترین پایگاه برای منطقه مورد مطالعه است. این انتخاب بر اساس مقایسه‏ اطلاعات بارش پایگاه‎‏‏های مختلف با اطلاعات ایستگاهی موجود انجام می‏ شود. با توجه ‏به ضرورت استفاده از پایگاه‏ های بارش جهانی، در این مقاله تجمیع مشخصات و تشریح ویژگی‏ های هر پایگاه که شامل قدرت تفکیک مکانی-زمانی و دوره‏های زمانی و اطلاعات در دسترس می ‏باشد انجام شد.

کلیدواژه‌ها


حسینی موغاری، س.م.، عراقی ‏نژاد، ش. و ابراهیمی، ک. 1395. ارزیابی پایگاه ‏های جهانی بارش و کاربرد آن‏ها در پایش خشکسالی-مطالعه موردی: حوضه کرخه. نشریه هواشناسی کشاورزی، 4(2): 14-26.
حسینی موغاری، س.م.، عراقی‏ نژاد، ش. و ابراهیمی، ک. 1396. بررسی دقت اطلاعات بارش شبکه‌بندی شده جهانی در حوضه دریاچه ارومیه. مجله تحقیقات آب و خاک ایران، 48(3): 587-598.
عزیزی، ق. صفرراد، ط. محمدی، ح. و فرجی سبکبار، ح. 1395. ارزیابی و مقایسه داده‌های بازکاوی شده بارش جهت استفاده در ایران. پژوهش‌های جغرافیای طبیعی، 48(1): 33-49.
Adler R.F., Huffman G.J., Chang A., Ferraro R., Xie P.-P., Janowiak J., Rudolf B., Schneider U., Curtis S. and Bolvin D. 2003. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). Journal of Hydrometeorology, 4 :1147-1167.
AgMERRA and AgCFSR. 2015. https://data.giss.nasa.gov/impacts/agmipcf/agmerra/ (visited 28 January 2018)
APHRODITE. 2013. http://www.chikyu.ac.jp/precip (visited 28 January 2018)
Ashouri H., Hsu K.-L., Sorooshian S., Braithwaite D.K., Knapp K.R., Cecil L.D., Nelson B.R. and Prat O.P. 2015. PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bulletin of the American Meteorological Society, 96: 69-83.
Beck H.E., van Dijk A.I., Levizzani V., Schellekens J., Miralles D.G., Martens B. and de Roo A. 2017. MSWEP: 3-hourly 0.25 global gridded precipitation (1979-2015) by merging gauge, satellite, and reanalysis data. Hydrology and Earth System Sciences, 21: 589-615.
Begueria S., Vicente Serrano S.M., Reig F. and Latorre B. 2014. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. International Journal of Climatology, 34: 3001-3023.
Berrisford P., Dee D., Poli P., Brugge R., Fielding K., Fuentes M., Kallberg P., Kobayashi S., Uppala S. and Simmons A. 2011. The ERA-Interim Archive Version 2.0, ERA Report Series 1, ECMWF, Shinfield Park. Reading, UK 13177.
Casse C., Gosset M., Peugeot C., Pedinotti V., Boone A., Tanimoun B.A. and Decharme B. 2015. Potential of satellite rainfall products to predict Niger River flood events in Niamey. Atmospheric Research, 163: 162-176.
Chen S., Liu H., You Y., Mullens E., Hu J., Yuan Y. and Tang G. 2014. Evaluation of high-resolution precipitation estimates from satellites during July 2012 Beijing flood event using dense rain gauge observations. PloS one, 9(4): e89681.
CHIRPS. 2015. https://iridl.ldeo.columbia.edu/SOURCES/UCSB/CHIRPS/v2p0/daily/global/.0p05/prcp/index.html (visited 28 January 2018)
Chylek P., Li J., Dubey M.K., Wang M. and Lesins G. 2011. Observed and model simulated 20th century Arctic temperature variability: Canadian earth system model CanESM2. Atmospheric Chemistry and Physics Discussions, 8: 22893-22907.
CMAP. 1997. ftp://ftp.cpc.ncep.noaa.gov/precip/cmap/ (visited 28 January 2018)
CMORPH. 2004. http://www.cpc.ncep.noaa.gov/products/janowiak/cmorph_description.html (visited 28 January 2018)
CPC. 2007. http://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP (visited 28 January 2018)
CRU. 2014. http://www.cru.uea.ac.uk/data (visited 28 January 2018)
Dai A., Trenberth K.E. and Qian T. 2004. A global dataset of Palmer Drought Severity Index for 1870–2002: Relationship with soil moisture and effects of surface warming. Journal of Hydrometeorology, 5: 1117-1130.
Dezfooli D., Abdollahi B., Hosseini-Moghari S.M. and Ebrahimi K. 2018. A comparison between high-resolution satellite precipitation estimates and gauge measured data. Case study: Gorganrood basin, Iran. Journal of Water Supply: Research and Technology – AQUA (Just accepted).
ECMWF. 2013. https://www.ecmwf.int/en/forecasts/datasets/catalogue-ecmwf-real-time-products (visited 28 January 2018)
Era-interim. 2011. http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/ (visited 28 January 2018)
Funk C., Peterson P., Landsfeld M., Pedreros D., Verdin J., Shukla S., Husak G., Rowland J., Harrison L. and Hoell A. 2015. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific data.
GFS. 2010. http://nomads.ncep.noaa.gov (visited 28 January 2018)
GPCC. 2015. http://www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html (visited 28 January 2018)
GPCP. 2003. https://www.esrl.noaa.gov/psd/data/gridded/data.gpcp.htm (visited 28 January 2018)
GPM. 2014. https://pmm.nasa.gov/data-access/downloads/gpm (visited 28 January 2018)
Harris I., Jones P., Osborn T. and Lister D. 2014. Updated high‐resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset. International Journal of Climatology, 34: 623-642.
Hong Y., Hsu K. L., Sorooshian S. and Gao X. 2004. Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. Journal of Applied Meteorology, 43(12), 1834-1853.
Hou A.Y., Kakar R.K., Neeck S., Azarbarzin A.A., Kummerow C.D., Kojima M., Oki R., Nakamura K. and Iguchi T. 2014. The global precipitation measurement mission. Bulletin of the American Meteorological Society, 95: 701-722.
Huffman G.J. and Bolvin D.T. 2013. TRMM and other data precipitation data set documentation. NASA, Greenbelt, USA 28.
Joyce R.J., Janowiak J.E., Arkin P.A. and Xie P. 2004. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology, 5: 487-503.
Kanamitsu M., Ebisuzaki W., Woollen J., Yang S.-K., Hnilo J., Fiorino M. and Potter G. 2002. Ncep–doe amip-ii reanalysis (r-2). Bulletin of the American Meteorological Society, 83: 1631-1643.
Katiraie-Boroujerdy P.S., Nasrollahi N., Hsu K.L. and Sorooshian S. 2016. Quantifying the reliability of four global datasets for drought monitoring over a semiarid region. Theoretical and applied climatology, 123: 387-398.
Maidment R.I., Allan R.P. and Black E. 2015. Recent observed and simulated changes in precipitation over Africa. Geophysical Research Letters, 42: 8155-8164.
MERRA. 2011. https://disc.sci.gsfc.nasa.gov (visited 28 January 2018)
Moazami S., Golian S., Kavianpour M.R. and Hong Y. 2013. Comparison of PERSIANN and V7 TRMM Multi-Satellite Precipitation Analysis (TMPA) products with rain gauge data over Iran. International journal of remote sensing, 34: 8156-8171.
MSWEP. 2017. http://data.princetonclimate.com/ (visited 28 January 2018)
NCEP. 2002. https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.gaussian.html (visited 28 January 2018)
Nikolopoulos E.I., Anagnostou E.N. and Borga M. 2013. Using high-resolution satellite rainfall products to simulate a major flash flood event in northern Italy. Journal of Hydrometeorology, 14: 171-185.
PERSIANN. 2014. http://chrsdata.eng.uci.edu (visited 28 January 2018)
PERSIANN-CDR. 2015. http://chrsdata.eng.uci.edu (visited 28 January 2018)
PERSIANN-CSS. 2004. http://chrsdata.eng.uci.edu (visited 28 January 2018)
Persson A. 2013. User guide to ECMWF forecast products, Version 1.1. ECMWF. Reading.
Philandras C.M., Nastos P.T., Kapsomenakis J., Douvis K.C., Tselioudis G. and Zerefos C. S. 2011. Long term precipitation trends and variability within the Mediterranean region. Natural Hazards and Earth System Sciences11: 3235-3250.
Raziei T., Bordi I., Pereira L.S. and Sutera A. 2010. Space-time variability of hydrological drought and wetness in Iran using NCEP/NCAR and GPCC datasets. Hydrology and Earth System Sciences, 14: 1919-2010.
Rienecker M.M., Suarez M.J., Gelaro R., Todling R., Bacmeister J., Liu E., Bosilovich M.G., Schubert S.D., Takacs L. and Kim G.-K. 2011. MERRA: NASA’s modern-era retrospective analysis for research and applications. Journal of climate, 24: 3624-3648.
Ruane A.C., Goldberg R. and Chryssanthacopoulos J. 2015. Climate forcing datasets for agricultural modeling: Merged products for gap-filling and historical climate series estimation. Agricultural and Forest Meteorology, 200: 233-248.
Saha S., Moorthi S., Pan H.-L., Wu X., Wang J., Nadiga S., Tripp P., Kistler R., Woollen J. and Behringer D. 2010. The NCEP climate forecast system reanalysis. Bulletin of the American Meteorological Society, 91: 1015-1057.
Schneider U., Becker A., Finger P., Meyer-Christoffer A. and Rudolf B.Z. 2015. GPCC Full Data Reanalysis Version 7.0 at 0.5: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historic Data, Global Precipitation Climatology Centre.
Sorooshian S., Hsu K.-L., Gao X., Gupta H.V., Imam B. and Braithwaite D. 2000. Evaluation of PERSIANN system satellite–based estimates of tropical rainfall. Bulletin of the American Meteorological Society, 81: 2035-2046.
Sorooshian S., Nguyen P., Sellars S., Braithwaite D., AghaKouchak A., and Hsu K. 2014. Satellite-based remote sensing estimation of precipitation for early warning systems. Extreme Natural Hazards, Disaster Risks and Societal Implications, 1: 99-112.
Tote C., Patricio D., Boogaard H., van der Wijngaart R., Tarnavsky E. and Funk, C. 2015. Evaluation of satellite rainfall estimates for drought and flood monitoring in Mozambique. Remote Sensing, 7: 1758-1776.
TRMM. 1997. https://pmm.nasa.gov/data-access/downloads/trmm (visited 28 January 2018)
UDEL. 2014. https://www.esrl.noaa.gov/psd/data/gridded/data.UDel_AirT_Precip.html (visited 28 January 2018)
Wang D., Gouhier T.C., Menge B.A. and Ganguly A.R. 2015. Intensification and spatial homogenization of coastal upwelling under climate change. Nature, 518: 390.
Xie P. and Arkin P.A. 1997. Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bulletin of the American Meteorological Society, 78: 2539-2558.
Xie P., Chen M., Yang S., Yatagai A., Hayasaka T., Fukushima Y. and Liu C. 2007. A gauge-based analysis of daily precipitation over East Asia. Journal of Hydrometeorology, 8: 607-626.
Yatagai A., Kamiguchi K., Arakawa O., Hamada A., Yasutomi N. and Kitoh A. 2012. APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bulletin of the American Meteorological Society, 93: 1401-1415.
CAPTCHA Image