پیامدهای تغییر اقلیم بر دما و بارش کشور افغانستان با تأکید بر حوضه های هیرمند و هریرود

نوع مقاله : پژوهشی کاربردی

نویسندگان

1 دانشجوی کارشناسی‌ارشد، گروه جغرافیا، دانشگاه فردوسی مشهد، مشهد، ایران.

2 دانشیار، گروه جغرافیا، دانشگاه فردوسی مشهد، مشهد، ایران.

3 پژوهشگر پسادکتری اقلیم‌شناسی، گروه جغرافیا، دانشگاه فردوسی مشهد، مشهد، ایران.

چکیده

یکی از مسائل پرچالش در مدیریت منابع آب، پیامدهای تغییر اقلیم بر پیکره آبی هر سرزمین است. بررسی اثرات تغییر اقلیم بر افغانستان که سرچشمه‌ای مهم برای منابع آب ایران است، ضروری است. به منظور بررسی ویژگی‌های دما و بارش و روند تغییرات آن‌ها در افغانستان و دو حوضه هیرمند و هریرود از داده‌های شبکه‌ای MSWX در یک دوره 40 ساله (2020-1981) استفاده شد. جهت بررسی پیش‌نگری‌‌های آینده از برونداد پنج مدل CMIP6 در دوره آینده نزدیک (2050-2026) استفاده و به منظور کاهش عدم قطعیت مدل‌های منفرد، یک چندمدلی همادی تولید شد. بررسی متوسط پهنه‌ای بارش نشان داد که به ‌ترتیب 11/2، 12/2 و 12/3 میلی‌متر/دهه از بارش افغانستان، حوضه‌های هیرمند و هریرود در چهار دهه اخیر کاسته شده است. در مقابل، متوسط پهنه‌ای دما 0/43، 0/45 و 0/57 درجه سلسیوس/دهه به ترتیب در افغانستان، هیرمند و هریرود افزایش یافته است. نتایج نشان داد دما در هر سه منطقه مورد بررسی طی دوره آینده نزدیک تحت دو سناریو SSP2-4.5 و SSP5-8.5 دارای بی‌هنجاری مثبت خواهد بود. در مقابل، بارش تحت سناریو SSP2-4.5 در مناطق شمالی افغانستان و دو حوضه مورد بررسی و تحت سناریو SSP5-8.5 در کل پهنه افغانستان و دو حوضه، بی‌هنجاری منفی خواهد داشت.

کلیدواژه‌ها

موضوعات


زرین، آذر، و داداشی رودباری، عباسعلی. (1401). بررسی مدل‌های CMIP6 در برآورد دمای ایران با تأکید بر حساسیت اقلیم ترازمند (ECS) و پاسخ اقلیم گذرا (TCR). مجله ژئوفیزیک ایران، 17(1)، 39-56. https://doi.org/10.30499/ijg.2022.344862.1430
Abbass, K., Qasim, M. Z., Song, H., Murshed, M., Mahmood, H., & Younis, I. (2022). A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Research, 29(28), 42539-42559. https://doi.org/10.1007/s11356-022-19718-6
Aliyar, Q., Dhungana, S., & Shrestha, S. (2022). Spatio-temporal trend mapping of precipitation and its extremes across Afghanistan (1951–2010). Theoretical and Applied Climatology, 147, 605-626. https://doi.org/10.1007/s00704-021-03851-2
Asadi-RahimBeygi, N., Zarrin, A., Mofidi, A., & Dadashi-Roudbari, A. (2024). Near-term temperature extremes in Iran using the decadal climate prediction project (DCPP). Stochastic Environmental Research and Risk Assessment, 38, 447–466. https://doi.org/10.1007/s00477-023-02579-x
Babar, Z. A., Zhi, X., Ge, F., Riaz, M., Mahmood, A., Sultan, S.,  Shad, M.A., Aslam, C. M., & Ahmad, M. F. (2016). Assessment of Southwest Asia surface temperature changes: CMIP5 20th and 21st century simulations. Pakistan Journal of Meteorology, 13(25): 1-15. https://www.prdb.pk/article/assessment-of-southwest-asia-surface-temperature-changes-cm-190
Bai, H., Xiao, D., Wang, B., Liu, D. L., Feng, P., & Tang, J. (2021). Multi‐model ensemble of CMIP6 projections for future extreme climate stress on wheat in the North China Plain. International Journal of Climatology, 41, E171-E186. https://doi.org/10.1002/joc.6674
Beck, H. E., Van Dijk, A. I., Larraondo, P. R., McVicar, T. R., Pan, M., Dutra, E., & Miralles, D. G. (2022). MSWX: Global 3-hourly 0.1 bias-corrected meteorological data including near-real-time updates and forecast ensembles. Bulletin of the American Meteorological Society, 103(3), E710-E732. https://doi.org/10.1175/BAMS-D-21-0145.1
Bevacqua, E., Zappa, G., Lehner, F., & Zscheischler, J. (2022). Precipitation trends determine future occurrences of compound hot–dry events. Nature Climate Change, 12(4), 350-355. https://doi.org/10.1038/s41558-022-01309-5
Dai, A., & Bloecker, C. E. (2019). Impacts of internal variability on temperature and precipitation trends in large ensemble simulations by two climate models. Climate dynamics, 52(1-2), 289-306. https://doi.org/10.1007/s00382-018-4132-4
Daufresne, M., Lengfellner, K., & Sommer, U. (2009). Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences, 106(31), 12788-12793. https://doi.org/10.1073/pnas.0902080106
Eyring, V., Cox, P. M., Flato, G. M., Gleckler, P. J., Abramowitz, G., Caldwell, P., ... & Williamson, M. S. (2019). Taking climate model evaluation to the next level. Nature Climate Change, 9(2), 102-110. https://doi.org/10.1038/s41558-018-0355-y
Farhat, F., Kashifi, M. T., Jamal, A., & Saba, I. (2022). Spatiotemporal projections of precipitation and temperature over Afghanistan based on CMIP6 global climate models. Modeling Earth Systems and Environment, 8(3), 4229-4242. https://doi.org/10.1007/s40808-022-01361-2
Fatima, E., Hassan, M., Hasson, S. U., Ahmad, B., & Ali, S. S. F. (2020). Future water availability from the western Karakoram under representative concentration pathways as simulated by CORDEX South Asia. Theoretical and Applied Climatology, 141, 1093-1108. https://doi.org/10.1007/s00704-020-03261-w
Hamed, K. H., & Rao, A. R. (1998). A modified Mann-Kendall trend test for autocorrelated data. Journal of hydrology, 204(1-4), 182-196. https://doi.org/10.1016/S0022-1694(97)00125-X
Kang, Y., Khan, S., & Ma, X. (2009). Climate change impacts on crop yield, crop water productivity and food security–A review. Progress in natural Science, 19(12), 1665-1674. https://doi.org/10.1016/j.pnsc.2009.08.001
Kendall, M. G. (1948). Rank correlation methods, Griffin, No. 98. Harvard Book List (edited) 1955. https://psycnet.apa.org/record/1948-15040-000
Kumar, S., Chanda, K., & Pasupuleti, S. (2020). Spatiotemporal analysis of extreme indices derived from daily precipitation and temperature for climate change detection over India. Theoretical and Applied Climatology, 140, 343-357. https://doi.org/10.1007/s00704-020-03088-5
Lange, S. (2019). Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1. 0). Geoscientific Model Development, 12(7), 3055-3070. https://doi.org/10.5194/gmd-12-3055-2019
Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the econometric society, 245-259. https://doi.org/10.2307/1907187
Men, B., Wu, Z., Liu, H., Tian, W., & Zhao, Y. (2020). Spatio-temporal analysis of precipitation and temperature: A case study over the Beijing–Tianjin–Hebei Region, China. Pure and Applied Geophysics, 177, 3527-3541. https://doi.org/10.1007/s00024-019-02400-3
Mishra, A. K., Özger, M., & Singh, V. P. (2011). Association between uncertainties in meteorological variables and water-resources planning for the state of Texas. Journal of Hydrologic Engineering, 16(12), 984-999. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000150
Politi, N., Vlachogiannis, D., Sfetsos, A., & Nastos, P. T. (2023). High resolution projections for extreme temperatures and precipitation over Greece. Climate Dynamics, 61(1-2), 633-667. https://doi.org/10.1007/s00382-022-06590-w
Rangwala, I., Miller, J. R., Russell, G. L., & Xu, M. (2010). Using a global climate model to evaluate the influences of water vapor, snow cover and atmospheric aerosol on warming in the Tibetan Plateau during the twenty-first century. Climate Dynamics, 34, 859-872. https://doi.org/10.1007/s00382-009-0564-1
Rehman, N., Adnan, M., & Ali, S. (2018). Assessment of CMIP5 climate models over South Asia and climate change projections over Pakistan under representative concentration pathways. International Journal of Global Warming, 16(4), 381-415. https://doi.org/10.1504/IJGW.2018.095994
Sachindra, D. A., Huang, F., Barton, A., & Perera, B. J. C. (2014). Statistical downscaling of general circulation model outputs to precipitation—part 2: bias‐correction and future projections. International Journal of Climatology, 34(11), 3282-3303. https://doi.org/10.1002/joc.3915
Scafetta, N. (2023). CMIP6 GCM ensemble members versus global surface temperatures. Climate Dynamics, 60(9-10), 3091-3120. https://doi.org/10.1007/s00382-022-06493-w
Sediqi, M. N., Hendrawan, V. S. A., & Komori, D. (2022). Climate projections over different climatic regions of Afghanistan under shared socioeconomic scenarios. Theoretical and Applied Climatology, 149(1-2), 511-524. https://doi.org/10.1007/s00704-022-04063-y
Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall's tau. Journal of the American statistical association, 63(324), 1379-1389. https://doi.org/10.1080/01621459.1968.10480934
Suryavanshi, S., Joshi, N., Maurya, H. K., Gupta, D., & Sharma, K. K. (2022). Understanding precipitation characteristics of Afghanistan at provincial scale. Theoretical and Applied Climatology, 150(3-4), 1775-1791. https://doi.org/10.1007/s00704-022-04257-4
Thrasher, B., Maurer, E. P., McKellar, C., & Duffy, P. B. (2012). Bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrology and Earth System Sciences, 16(9), 3309-3314. https://doi.org/10.5194/hess-16-3309-2012
Weedon, G. P., Gomes, S., Viterbo, P., Shuttleworth, W. J., Blyth, E., Österle, H., ... & Best, M. (2011). Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century. Journal of Hydrometeorology, 12(5), 823-848. https://doi.org/10.1175/2011JHM1369.1
Worku, G., Teferi, E., Bantider, A., & Dile, Y. T. (2020). Statistical bias correction of regional climate model simulations for climate change projection in the Jemma sub-basin, upper Blue Nile Basin of Ethiopia. Theoretical and Applied Climatology, 139, 1569-1588. https://doi.org/10.1007/s00704-019-03053-x
Xue, D., Lu, J., Leung, L. R., Teng, H., Song, F., Zhou, T., & Zhang, Y. (2023). Robust projection of East Asian summer monsoon rainfall based on dynamical modes of variability. Nature Communications, 14(1), 3856. https://doi.org/10.1038/s41467-023-39460-y
Yan, Y., You, Q., Wu, F., Pepin, N., & Kang, S. (2020). Surface mean temperature from the observational stations and multiple reanalyses over the Tibetan Plateau. Climate Dynamics, 55, 2405-2419. https://doi.org/10.1007/s00382-020-05386-0
Zarrin, A., & Dadashi-Roudbari, A. (2021). Projection of future extreme precipitation in Iran based on CMIP6 multi-model ensemble. Theoretical and Applied Climatology, 144, 643-660. https://doi.org/10.1007/s00704-021-03568-2
Zarrin, A., Dadashi-Roudbari, A., & Hassani, S. (2021). Historical variability and future changes in seasonal extreme temperature over Iran. Theoretical and Applied Climatology, 146, 1227-1248. https://doi.org/10.1007/s00704-021-03795-7
Zhai, J., Mondal, S. K., Fischer, T., Wang, Y., Su, B., Huang, J., ... & Uddin, M. J. (2020). Future drought characteristics through a multi-model ensemble from CMIP6 over South Asia. Atmospheric Research, 246, 105111. https://doi.org/10.1016/j.atmosres.2020.105111
CAPTCHA Image
دوره 11، شماره 1 - شماره پیاپی 31
دانش بومی و راه‌حل‌های مبتنی بر طبیعت
خرداد 1403
صفحه 35-48
  • تاریخ دریافت: 01 دی 1402
  • تاریخ بازنگری: 29 فروردین 1403
  • تاریخ پذیرش: 01 اردیبهشت 1403