مروری بر فیلتراسیون غشایی و بررسی کارایی آن در بهبود کیفیت آب در سیستم‏های آبزی‏پروری مداربسته (RAS)

نوع مقاله : مروری

نویسندگان

1 دانشجوی دکترای بوم‏‌شناسی آبزیان، گروه شیلات، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران

2 دانشیار گروه شیلات، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران

3 مربی پژوهشکده آبزی‏‌پروری آب‏‌های داخلی، موسسه تحقیقات علوم شیلاتی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، بندرانزلی، ایران

چکیده

با توجه ‏به اینکه بخش قابل توجهی از آبزیان تجاری کشور در سیستم‌‏های مداربسته پرورش داده می‏‌شوند، ارزیابی و کنترل دقیق روی میزان کیفیت آب در این سیستم‌‏ها ضروری است. با توجه‏ به این مسئله، در پژوهش حاضر کارایی فیلتراسیون غشایی در تصفیه آب حاصل از سیستم‏های آبزی‏پروری مداربسته بررسی شد. در ابتدا اطلاعات کلی از فرآیند فیلتراسیون غشایی شامل انواع آن و مزایای آن‏ها ارائه شد و در ادامه، به اهمیت فیلتراسیون غشایی در حذف مواد آلاینده و تصفیه آب در سیستم‏‌های مداربسته آبزی‏‌پروری پرداخته شد. فیلتراسیون غشایی، طیف وسیعی از فرآیند فیلتراسیون شامل اسمز معکوس (RO)، نانوفیلتراسیون (NF)، اولترافیلتراسیون (UF) و میکروفیلتراسیون (MF) را شامل می‌‏شود. بررسی منابع به‏ دست آمده نشان داد مهم‌ترین مزایای روش فیلتراسیون غشایی کاهش هزینه‌‏های کلی تولید، انعطاف‌‏پذیری بالا و کیفیت بالای محصول می‌‏باشد. براساس مرور منابع، مواد جامد موجود در سیستم پرورش آبزیان از غذای مصرف‏ نشده و مدفوع تولید شده توسط ماهی حاصل می‌‏شود و می‏تواند عامل گسترش عوامل میکروبی و بیماری‏زا در محیط‌‏های آبی باشد. کاربرد روش‌‏های مختلف فیلتراسیون غشایی نشان داد این روش‌‏ها کارایی قابل توجهی در حذف ذرات ریز و مواد آلی از پساب‌‏های آبزی‌‏پروری دارند. از این‏رو، می‏‌توانند در جهت مدیریت پایدار ذخایر آبی و همچنین، تصفیه آب در این بخش استفاده شوند.

کلیدواژه‌ها


رادخواه، ع.ر. 1393. حذف آمونیاک از سیستم‌‏های پرورش ماهی با استفاده از باکتری‏‌های نیتریفیکاتور. اولین همایش آبزی‏پروری نوین- چالش‏‌ها و فرصت‏‌ها. دانشگاه علوم کشاورزی و منابع طبیعی گرگان. 
رادخواه، ع.ر. و کریمی، ع. 1393. احیای ذخایر ماهیان خاویاری با رویکرد پرورش در قفس. اولین همایش آبزی‏‌پروری نوین- چالش‏‌ها و فرصت‌‏ها. دانشگاه علوم کشاورزی و منابع طبیعی گرگان.
رادخواه، ع.ر.، ایگدری، س. و صادقی نژاد ماسوله ا. 1399. بررسی خواص ضدمیکروبی نانوذرات نقره (AgNPs) به‏ منظور کنترل بیماری‌ها و مدیریت بهداشت در سیستم‌های آبزی‌پروری. مجله آبزیان زینتی، 7(۱): 17-15.
رادخواه، ع.ر. و ایگدری، س. 1398. بررسی خصوصیات زیست ‏شناختی و پتانسیل‏‌های پرورشی برخی از گونه‌‏های جراح ماهی (خانواده: Acanthuridae) ساکن خلیج فارس جهت بهره‌‏برداری در صنعت پرورش ماهیان زینتی. مجله آبزیان زینتی، 6(4): 1-11.
رادخواه، ع.ر. 1398. گسترش بیماری‌های انگلی به ‏عنوان تهدیدی جدی برای صنعت پرورش ماهیان زینتی: بررسی میزان شیوع انگل آرگولوس (Argulus) در ماهیان زینتی ایران. مجله آبزیان زینتی، 6(۳): ۱۳-۲۲.
رادخواه، ع.ر. و صادقی‏نژاد ماسوله، ا. 1400. بررسی تاثیر عوامل فیزیکوشیمیایی آب بر زیست‏فراهمی، میزان سمیت و سطح اثرگذاری نانوذرات فلزی در اکوسیستم‌‏های آبزی. نشریه آب و توسعه پایدار، 8(2): 71-90.

Alfa Laval B.W. 2021. Alfa Laval Global Website. What is membrane filtration? Available at: https://www.alfalaval.com/products/separation/membranes/what-is-membrane-filtration. (visited 29 May 2021).
Anis S.F., Hashaikeh R. and Hilal N.2019. Microfiltration membrane processes: A review of research trends over the past decade. Journal of Water Process Engineering, 32: 100941.
Bodzek M., Konieczny K. and Rajca M. 2019. Membranes in water and wastewater disinfection–review. Archives of Environmental Protection, 45(1): 3-18. 
Bonisławska M., Nedzarek A., Drost A., Rybczyk A. and Tórz A., 2016. The application of ceramic membranes for treating effluent water from closed-circuit fish farming. Archives of Environmental Protection, 42(2): 59-66.
Chiam C-k. and Rosalam S. 2011. Purification of aquacultural water: conventional and new membrane-based techniques. Separation and Purification Reviews, 40(2): 126-160.
Dhineshkumar V. and Ramasamy D. 2017. Review on membrane technology applications in food and dairy processing. Journal of Applied Biotechnology and Bioengineering, 3(5): 399-407.
Ezugbe E.O. and Rathilal S. 2020. Membrane Technologies in Wastewater Treatment: A Review. Journal of Membranes, 10: 1-28.
Fletcher R. 2020. Membrane filters prove promising in salmon RAS. Available at: https://thefishsite.com/articles/membrane-filters-prove-promising-in-salmon-ras. (visited 7 May 2020). 
Fossmark R.O., Vadstein O., Rosten T.W., Bakke I., Košeto D., Bugten A.V., Helberg G.A., Nesje J., Jørgensen N.O.J., Raspati G., Azrague K., Østerhus S.W. and Attramadal K.J.K. 2020. Effects of reduced organic matter loading through membrane filtration on the microbial community dynamics in recirculating aquaculture systems (RAS) with Atlantic salmon parr (Salmo salar). Journal of Aquaculture, 524: 735268.
Gemende B., Gerbeth A., Pausch N. and Bresinsky A.V. 2008. Tests for the application of membrane technology in a new method for intensive aquaculture. Desalination, 224(1–3): 57-63.
Gerbeth A. and Gemende B. 2021. Membrane technology for process water cleaning in aquaculture - chances and challenges. Available at: http://home.zcu.cz/~tesarova/IP/Proceedings/Proc_2012/Presentations/Membrane.pdf. (visited 30 May 2021)
Hube S., Eskafi M., Hrafnkelsdóttir K.F., Bjarnadóttir B., Bjarnadóttir M.A., Axelsdóttir S. and Wu B. 2020. Direct membrane filtration for wastewater treatment and resource recovery: A review. Science of The Total Environment, 710: 136375
Hurtado C.F. and Cancino-Madariaga B. 2014. Ammonia retention capacity of nanofiltration and reverse osmosis membranes in a non steady state system, to be use in recirculation aquaculture systems (RAS). Aquacultural Engineering, 58: 29-34.
Jianxian Z. and Hongqi Y. 2009. Ultrafiltration technology and its application. Journal of Industrial Water and Wastewater, 2: 1-5.
Kurama H., Poetzschke J. and Haseneder R. 2002. The application of membrane filtration for the removal of ammonium ions from potable water. Water Research, 36(11): 2905-2909.
Li X., Jiang L. and Li H. 2018. Application of ultrafiltration technology in water treatment. IOP Conf. Series: Earth and Environmental Science, 186: 012009.
Nedberg H.G.A. 2018. The effects of membrane filtration in a recirculating aquaculture system on water quality and fish performance of Atlantic salmon (Salmo salar). Available at: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2504408.(visited April 14, 2021).
Ostojčić M., Brkić S., Tišma M., Zelić B. and Budžaki S. 2020. Membrane filtration as an environmentally friendly method for crude biodiesel purification. Kemija u Industriji, 69(3-4): 175–181.
Radkhah A.R. and Eagderi S. 2021. Book review: Lobsters: Biology, Fisheries and Aquaculture, 2019. E. V. Radhakrishnan, Bruce F. Phillips and Gopalakrishnan Achamveetil (eds). Current Science, 12(10): 1640-1642.
Roger C. and Viadero Jr. 2003. Membrane filtration: Emerging technology removes fine solids from recirculating systems. Available at: https://www.aquaculturealliance.org/advocate/membrane-filtration-emerging-technology-removes-fine-solids-from-recirculating-systems. (visited 1 June 2003). 
Sun X., Wang C., Li Y., Wang W. and Wei J. 2015. Treatment of phenolic wastewater by combined UF and NF/RO processes. Desalination, 355: 68–74.
Synder Filtration. 2021. Pressure-Driven Membrane Filtration Processes. Available at: https://synderfiltration.com/learning-center/articles/introduction-to-membranes/pressure-driven-membrane-filtration-processes. (visited 29 May 2021).
Takht Ravanchi M., Kaghazchi T. and Kargari A. 2009. Application of membrane separation processes in petrochemical industry: A review. Desalination, 235: 199–244.
Viadero R.C. and Noblet J.A. 2002. Membrane filtration for removal of fine solids from aquaculture process water. Aquacultural Engineering, 26: 151–169.
CAPTCHA Image