Two-Dimensional Simulation of the Flow Pattern Around Spur Dike using the SRH-2D Numerical Model

Document Type : Applied Article

Author

Ph.D. Candidate in Water Structures, Water Science and Engineering Department, Razi University, Kermanshah, Iran

Abstract

The construction of structures such as gutters, despite erosion control, can be  due to the formation of a localized flow structure such as sudden expansion and contraction at the flow passage, the formation of downstream flow, and its impact on the channel bed upstream of the gutter and The shear layer and the resulting turbulence can cause local erosion and threat to the structure. In this research, using the two-dimensional numerical model SRH-2D, the flow pattern around the spur dike wall was simulated with angles of 45, 90, and 135 degrees in the channel. The results showed that with an angle of 45 degrees, the length of the return zone of the stream will be about 2 and 8 times shorter than the 90 and 135° angle, respectively. However, in a spur dike with a 90 degree angle, the length of the return zone is about 3.5 times shorter than when the breaker is located at an angle of 135 degrees in the channel. Also, shear stress in the areas close to the floor in the spur dike with an angle of 45 degrees is the lowest value and the breaker with an angle of 135 degrees has the highest value.

Keywords

Main Subjects


اسمعیلی، پ.، بوداقپور، س.، رستمی، م. و میرزایی، م. 1399. مطالعه آزمایشگاهی مولفه‌‏های طولی سرعت پیرامون آبشکن‏‌های سری ساده. نشریه علمی پژوهشی مهندسی آبیاری و آب ایران، 11(42): 74-60.
اعزی، س.، خانجانی، م.ج. و کرمانی، م. 1397. شبیه‏‌سازی دو بعدی الگوی جریان و تغییرات بستر در آبراهه‏‌های مستقیم و پیچانرودی تحت تأثیر سازه آبشکن. نشریه علمی آبیاری و زهکشی ایران، 12(4): 970-981.
صفرزاده، 1. 1389. مطالعه آزمایشگاهی الگوی جریان آشفته حول آبشکن با شکل‏های مختلف دماغه. رساله دکتری. دانشکده فنی و مهندسی. دانشگاه تربیت مدرس. تهران.
کشاورز، م.ح. و حکیم‌زاده، ح. 1387. شبیه‌سازی عددی سه بعدی الگوی جریان و گردابه‌‏ها اطراف آبشکن‏‌های L شکل نفوذناپذیر در پنج زاویه مختلف از نیمه اول قوس نیم دایره. یازدهمین کنفرانس هیدرولیک ایران. دانشگاه ارومیه، ارومیه.

Ahmad M. 1953. Experiments on design and behavior of spur dikes. Proceedings of the international hydraulics convention. University of Minnesota. Minneapolis, USA.
Chen F. Y. and Ikeda S. 1997. Horizontal separation in shallow open channels with spur dikes. Journal of Hydroscience and Hydraulic Engineering, 15(2): 15-30.
DHI (Danish Hydraulic Institute). 1996. MIKE21: User guide and reference  manual. Denmark, Hørsholm.
Kumar T., Tyagi L.D. Aggarwal and Kumar M. 2018. Comparison of scour around different shapes of groynes in open channel. International Journal of Recent Trends in Engineering and Research, 4(3): 382-392.
Lee K. S and Jang C. L. 2016. Numerical investigation of space effects of serial spur dikes on flow and bed changes by using Nays2D. Journal of Korea Water Resources Association, 49(3): 241-252.
Rajaratnam N. and Nwachukwu B.A. 1983. Flow near Groin-like structures. Journal of Hydraulic Engineering (ASCE), 109(3): 463-480.
Rodi W. 1993. On the simulation of turbulent flow past bluff bodies. Journal of Wind Engineering and Industrial Aerodynamics, 46-47: 3-19.
U.S. Army Corps of Engineers. 1996. Engineering and design—risk-based analysis for flood damage reduction studies. EM 1110–2–1619, CECW–EH–4. Washington, DC, United States.
Vaghefi M., Ghodsian M. and Akbari M. 2017. Experimental investigation on 3D flow around a single Tshaped spur dike in a bend. Period. Polytech. Civil Engineering, 61(3): 462-470. 
Xiufang Z., Pingyi M. and Chengyu Y. 2012. Experimental study on flow turbulence distribution around a spur dike with different structure. Procedia Engineering, 28(5): 772-775.
Yazdi j., Sarkardeh H., Azamathulla H. and Ghani A. 2010. 3D simulation of flow around a single spur dike with free-surface flow. International Journal of River Basin Management, 8(1): 55-62.
CAPTCHA Image