Investigating the Impacts of Climate Change on Water Security in Iran

Document Type : Applied Article

Authors

1 Associate Professor, Department of Geography, Ferdowsi University of Mashhad, Mashhad, Iran.

2 Postdoctoral Researcher in Climatology, Department of Geography, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

Water security includes sustainable use and protection of water systems, protection against water-related hazards, sustainable development of water resources, and preservation of water functions and services for humans and the environment. To investigate water security in the past decades, the WSIM-GLDAS water security model was used, and for assessing available water storage, the GRACE satellite data were employed. Then, a multi-model was analyzed using CMIP6 models to investigate future changes in temperature and potential evapotranspiration (PET) over the country's medium-scale under SSP scenarios. The results showed a decreasing trend in available water storage over the past two decades in Iran. The outcome of the water security model indicated a negative return period of water scarcity across the country. The lowest value of WSIM is -10.1 which is seen in the eastern and central regions of Iran, indicating the low water security of these areas. Climate projections show a significant increase in temperature (0.78 oC/decade under the SSP5-8.5 scenario) and evapotranspiration (153.5 mm/decade under the SSP5-8.5 scenario) in the country. To increase water security, it is necessary to take effective adaptation strategies, the purpose of which is to increase the water storage capacity in the soil (green water) and reduce soil erosion in order to increase the quality of the soil and maintain the storage capacity of reservoirs (blue water). Therefore, the adaptation strategies to climate change and its effect on water redistribution from green water to blue water, and the long-term socio-economic consequences of climate change should be considered in future climate plans of Iran.

Keywords

Main Subjects


اسماعیلی‌نژاد، ا. و داوری، ک. 1399. مدیریت تخصیص آب در ایران، بیراهه‌ای در گذر زمان. آب و توسعه پایدار، 7(2): 23-32. doi: 10.22067/jwsd.v7i2.85262
زرین، آ. و داداشی رودباری، ع. 1400. پیش‌نگری دوره‌های خشک و مرطوب متوالی در ایران مبتنی‌بر برونداد همادی مدل‌های تصحیح شده اریبی CMIP6. فیزیک زمین و فضا، 47(3): 561-578. doi:10.22059/jesphys.2021.319270.1007295
زرین، آ. و داداشی رودباری، ع. 1401. مدیریت ریسک اقلیمی (CRM) و ضرورت تدوین و اجرای برنامه‌های سازگاری ملی (NAPs). آب و توسعه پایدار، 9(1): 85-94.  doi:10.22067/jwsd.v9i1.2111.1095
مالکی، ن.، شاکری بستان آباد، ر.، صالحی کمرودی، م. و سیدآبادی، س. 1400. بررسی وضعیت شاخص ترکیبی امنیت آبی استان‏های ایران در بازه 1390-1395: کاربردی از روش‌های تحلیل چندمعیاره. آب و توسعه پایدار، 8(2): 21-32. doi:10.22067/jwsd.v8i2.1028
مرکز پژوهش‏های مجلس شواری اسلامی. 1400. بررسی تحلیلی شرایط موجود و تبیین وضعیت آینده بحران آب در کشور. شماره مسلسل: 18067، کد موضوعی 250. تاریخ انتشار 19/11/1400. تهران، ایران.

2030 Water Resources Group. 2009. Charting Our Water Future: Economic Frameworks to Inform Decision-Making. Accessed January 1, 2023. http://www.2030wrg.org/wp-content/uploads/2014/07/Charting-Our-Water-Future-Final.pdf.
Babel M. S., Shinde V. R., Sharma D. and Dang N. M. 2020. Measuring water security: A vital step for climate change adaptation. Environmental Research, 185: 109400. doi: 10.1016/j.envres.2020.109400.
Bai H., Xiao D., Wang B., Liu D. L., Feng P. and Tang, J. 2021. Multi‐model ensemble of CMIP6 projections for future extreme climate stress on wheat in the North China Plain. International Journal of Climatology, 41: 171-186.  doi: 10.1002/joc.6674.
Chellaney B. 2011. Water: Asia's new battleground, volume 1. Georgetown University Press. Washington, D.C, USA.
Crawford J., Venkataraman K. and Booth J. 2019. Developing climate model ensembles: A comparative case study. Journal of hydrology, 568: 160-173. doi: 10.1016/j.jhydrol.2018.10.054.
Fonseca A., Andrade C. and Santos J. A. 2022. Agricultural Water Security under Climate Change in the Iberian Peninsula. Water, 14(5): 768. doi: 10.3390/w14050768.
Food and Agriculture Organization (FAO). 2015. The State of Food Insecurity in the World 2015, Intl. Food for Agric. Dev. World Food Program. Rome, Italy.
Hameed M., Moradkhani H., Ahmadalipour A., Moftakhari H., Abbaszadeh P. and Alipour, A. 2019. A review of the 21st century challenges in the food-energy-water security in the Middle East. Water, 11(4): 682. doi: 10.3390/w11040682.
Intelligence Community Assessment. 2012. Global Water Security. February. Accessed January 1, 2023. https://www.dni.gov/files/documents/Special%20Report_ICA%20Global%20Water%20Security.pdf.
International Energy Agency (IEA). (2016) World Energy Outlook 2016 Energy Access Database, Cedex, France.  Accessed January 1, 2023, available at: http://www.iea.org/weo. last access: 20 January 2020.
Jianyun Z., Guoqing W., Yang Y., Ruimin H. and Jiufu L. 2009. Impact of climate change on water security in China. Advances in Climate Change Research, 5(00): 34.
Mishra B. K., Kumar P., Saraswat C., Chakraborty S. and Gautam, A. 2021. Water security in a changing environment: Concept, challenges and solutions. Water, 13(4): 490. doi: 10.3390/w13040490.
Pall P., Allen M. R. and Stone D. A. 2007. Testing the Clausius–Clapeyron constraint on changes in extreme precipitation under CO2 warming. Climate Dynamics, 28(4): 351-363. doi: 10.1007/s00382-006-0180-2.
Patrick H. O. 2020. Climate change, water security, and conflict potentials in South Africa: Assessing conflict and coping strategies in rural South Africa. Handbook of climate change management: Research, leadership, transformation, 1-18.
Rodell M., Famiglietti J. S., Wiese D. N., Reager J. T., Beaudoing H. K., Landerer F. W. and Lo, M. H. 2018. Emerging trends in global freshwater availability. Nature, 557(7707): 651-659. doi: 10.1038/s41586-018-0123-1. 
Rodell M., Houser P.R., Jambor U.E.A., Gottschalck J., Mitchell K., Meng C.J., Arsenault K., Cosgrove B., Radakovich J., Bosilovich M. and Entin, J.K. 2004. The global land data assimilation system. Bulletin of the American Meteorological society, 85(3): 381-394. doi: 10.1175/BAMS-85-3-381.
UN-Water, 2013. Analytical Brief on Water Security and the Global Agenda. Accessed January 1, 2023.  http://i.unu. edu/media/unu.edu/publication/34287/UNWater_watersecurity_analyticalbrief.pdf.
World Bank. 2007. Making the Most of Scarcity Accountability for Better Water Management in the Middle East and North Africa.: World Bank. Washington, DC. USA.
Yeates E., Wahl M., Geheran M.P., Christensen S.D., Mahbubur R., Brown D.T., Baston D.P. and Parris, T.M. 2020, December. Decision Support Tools to Communicate Hydrologic Anomalies and Impacts. In AGU Fall Meeting Abstract, Vol. 2020: 26-08. https://ui.adsabs.harvard.edu/abs/2020AGUFMSY028..02Y/abstract.
Zarrin A. and Dadashi-Roudbari, A. 2021. Projection of future extreme precipitation in Iran based on CMIP6 multi-model ensemble. Theoretical and Applied Climatology, 144(1): 643-660. doi: 10.1007/s00704-021-03568-2.
Zawahri N. A. 2017. Water security in the Middle East, Anthem Press, Tufts University, USA.
CAPTCHA Image
Volume 10, Issue 1 - Serial Number 27
Water and food security in the 7th plan of land development and preparation
June 2023
Pages 37-44
  • Receive Date: 30 January 2023
  • Revise Date: 12 May 2023
  • Accept Date: 12 May 2023