Introduction to Multiple Linear Regression and its application to simulate daily pan evaporation

Document Type : review paper

Authors

Tabriz

Abstract

Evaporation is one of the main parameters for the optimum operation of reservoirs, design of irrigation systems and scientific management of water resources. Accurate estimation of the water evaporation level is crucial in any region especially in arid and semiarid regions. In this study, the feasibility of simulation of pan evaporation in Maraghe station using the multiple regression models were investigated. Meteorological data, including the maximum and minimum air temperatures, dew point temperature, the maximum and minimum relative humidities, the number of sunshine hours, the wind speed records during the 1992 to 2012 (using the daily time scale) of Maraghe synoptic station were used. Various models of multiple linear regression (MLR) were derived for simulating the evaporation in the mentioned station. The selected MLR model was tested for multi-collinearity of input repressors using the Ridge Regression. For this purpose, the Variance Inflation Factor (VIF), responsible for the multi-collinearity in regression analysis, was calculated for each of the input variables. The results showed that all of the obtained VIFs values were less than 10 and the multi-collinearity is not created. Furthermore, the ratio of eigenvalues of the correlation matrix, λmax\λmin, for the selected model was calculated as 6.2. The selected model consisted of the maximum relative humidity (RHmax), number of sunshine hours (n), and minimum air temperature (Tmin) as independent inputs, and the Pan evaporation as the dependent variable, f (RHmax, Tmin, n). Therefore, it can be concluded that there was no multi-collinearity in the selected MLR model. The RMSE and R2 values of the selected model (MLR) was calculated as 2.37 and 0.676 mm/day, respectively.

Keywords


اسکافی نوغانی، م.، مفتاح هلقی، م. و مساعدی ا. 1387. ارائه مدل رگرسیونی پیش‌بینی تلفات تبخیر بااستفاده از پارامترهای اندازه گیری شده هواشناسی. سومین کنفرانس مدیریت منابع آب ایران، 23 تا 25 مهر، دانشگاه تبریز، دانشکده مهندسی عمران، تبریز.
خداشناس، س.ر.، قهرمان، ب.، داوری، ک. و ناظریان، ح 1387. ارائه مدل‏های رگرسیونی چند متغیره برآورد رسوب درحوضه‏های شمال اسـتان خراسان. مجله آب و خاک، 2: 150-165.
سیفی، ا.، میرلطیفی، س.م. و ریاحی، ح. 1389. توسعه مدل ترکیبی رگرسیون چندگانه-تحلیل مولفه‏ها و عامل‏های اصلی (PCA-MLR) در پیش بینی تبخیر-تعرق مرجع. نشریه آب و خاک، 24(6): 1186-1196.
شیخ الاسلامی، ن.، قهرمان، ب.، مساعدی، ا.، داوری، ک. و مهاجرپور م. 1393. پیش بینی تبخیر و تعرق گیاه مرجع (ETO) با استفاده از روش آنالیز مؤلفه های اصلی (PCA) و توسعه مدل رگرسیونی خطی چندگانه (PCA_MLR). نشریه آب و خاک (علوم و صنایع کشاورزی)، 28(2): 420-429.
فکری، ن.، اسماعیلی، ح.، دوستی، ح. و پارسایی، ر. 1390. بررسی کاربرد رگرسیون ریچ در علوم پزشکی. نشریه دانشجویی آمار (ندا)، سال یازدهم. شماره اول: 12-19.
نوری، ر.ا.، اشرفی، خ. و اژدرپور، ا. 1387. مقایسه کاربرد روش‏های شبکه عصبی مصنوعی و رگرسیون خطی چندمتغیره بر اساس تحلیل مولفه‏های اصلی برای پیش‏بینی غلظت میانگین روزانه کربن مونوکسید: بررسی موردی شهر تهران. مجله فیزیک زمین و فضا، 34: 135-152.
Almedeij J. 2012. Modeling Pan Evaporation for Kuwait by Multiple Linear Regression. The Scientific World Journal. 9: 10-11.
Balan B, S Mohaghegh, and Ameri S. 1995. State- of- Art- in permeability determination from well log data: Part 1- A comparative study. Model development. SPE. 30978:17-25.
Bowker A.H, and Lieberman G.J. 1972. Engineering Statistics. Prentice-Hall.
Bruton JM, Mcclendon RW, and Hoogenboom G. 2000. Estimating daily pan evaporation with artificial neural networks. Trans ASAE.43(2):491–496.
Chow V. T. Maidment D. R. and Mays L.W. 1988. Applied Hydrology. McGraw hill, Newyork.
Googhari SK. 2012. Daily pan evaporation estimation using a neuro-fuzzy-based model. J Agric Sci Tech. 2: 223–228.
Hirsch R.M, Helsel D.R, Cohn T.A, Gilroy E.J. 1993. Statistical Analysis of Hydrologic Data. In: Handbook of Hydrology. Chapter 17. Maidement, R. Mc GRAW-Hill, INC.
Kisi O. 2009. Modeling monthly evaporation using two different neural computing techniques. Irrig Sci. 27:417–430.
Ladlani I, Hauichi L, Dhemili L, Heddem S, and Blouze Kh. 2012. Estimation of Daily Refrence Evapotranspiration in the North of Algeria using Adaptive Neuro-Fuzzy Inference System (ANFIS) and Multiple Linear Regression (MLR) Models: A Comparative Study. Arab J Sci Eng.39: 5959-5969.
Li, Y.F. Min, X. and Thong-ngee, G. 2010. Adaptive ridge regression system for software cost estimating on multi-collinear datasets. The Journal of System and Software. 83: 2332-2343.
Malik A, Kumar A. 2015. Pan Evaporation Simulation Based on Daily Meteorological Data Using Soft Computing Techniques and Multiple Linear Regression. Water Resour Manage. 29: 1859-1872 .
Mallik A.P, Jyothy S.A, and Sekhar Reddy K.C. 2013. Daily Reference Evapotranspiration Estimation using Linear Regression and ANN Models. The Institution of Engineers (India). 93(4):215–221.
Salas, J.D. 1993. Analysis and modeling of hydrological time series, Handbook of Hydrology, edited by David R. Maidment, McGraw-Hill, New York.
Shirgure PS, and Rajput GS. 2012. Prediction of daily pan evaporation using neural networks models. Sci J Agric. 1(5):126–137.
Shirgure PS. 2011. Evaporation modeling with neural networks-A research review. Int J Res Rev Soft Intell Comput. 1(2):37–47.
Shirsath P.b, and Kumar A.S. 2009 . A Comparative Study of Daily Pan Evaporation Estimation Using ANN, Regression and Climate Based Models.Water Resour Manage. 24: 1571-1581.
Shirsath PB, Singh AK. 2010. A comparative study of daily pan evaporation estimation using ANN, regression and climate based models. Water Resour Manag. 24:1571–1581.
CAPTCHA Image
Volume 2, Issue 2 - Serial Number 5
Economic Implications for Water Management Policies or Programs
March 2016
Pages 67-76
  • Receive Date: 25 December 2015
  • Accept Date: 25 December 2015