Inverse Solution Technique: Application in Determining the Effective Porosity and Hydraulic Conductivity of Soil in Drainage System of Shadegan Plain

Document Type : review paper

Authors

1 Imam Khomeini International University

2 Imam Khomeini International Universit

3 Agricultural Research, Education and Extension Organization

Abstract

The inverse solution method is a method in which the required parameters are indirectly determined numerically by solving the equations. Various methods are available to estimate the effective porosity (f) and the soil hydraulic conductivity (k). The inverse technique is one of the most efficient methods for estimating these coefficients.Therefore, determination of these parameters for actual conditions in drainage experimental fields was investigated using the measured values of some indicators and application of the inverse solution method. The volume of outlet water from drainage pipes and the variation in water table height were measured in 24-hour periods for 3 irrigation intervals in the Shadegan plain subsurface drainage system. With the drop in the water table, f was measured with the Taylor method and k was estimated with Skaggs method. The variations of f and k with water table depth (z) were determined. The arithmetic mean of f and k were calculated equal to 0.0118 m3/m3 and 0.3055 m/d, respectively. The weighted average of f and k with weight of z were 0.0116 m3/m3 and 0.2392 m/d, respectively. Also, using the concept of average function, f and k according to z were estimated equal to 0.0117 m3/m3 and 0.3093 m/d, respectively. To evaluate the values of F and k, the distance between specific drainage was calculated using the modified Glover equation. The results showed that when the water table is near the ground surface, the k value is dependent on several factors and k is not only a fuction of z. With increasing z, the values of f partially and k significantly decreased. The proposed inverse solution technique is a simple and convenient method for estimating f and k. The main advantage of this method is using the actual scale of the soil, as well as its heterogeneity and anisotropy.

Keywords


اکبری، م.، نظری، ب.، پارسی‏ نژاد، م. و ابراهیمیان، ح. 1391. تخمین معکوس هدایت هیدرولیکی خاک با استفاده از مدل DRAINMOD. مجله علوم و فنون کشاورزی و منابع طبیعی، 62: 85-92.
‌حسن‌اقلی، ع.ر.، اسماعیلی امینلویی، ع. و سخایی ‏راد، ح. 1394. بررسی کمیت و کیفیت زهاب زهکش‌های زیرزمینی بدون پوشش در مقایسه با پوشش معدنی در دشت شادگان. مجله پژوهش آب در کشاورزی، 29: 264-275.
‌عزیزپور، س.، فتحی، پ. و نوبخت‎وکیلی، ک. 1391. برآورد توأم هدایت هیدرولیکی اشباع خاک و تخلخل مؤثر با استفاده از رویکرد مسئله معکوس هوشمند. مجله علوم و فنون کشاورزی و منابع طبیعی، نشریه علوم آب‌وخاک، 60: 13-22.
علیزاده، ا. 1389. زهکشی جدید برنامه‌ریزی طراحی و مدیریت سیستم‌های زهکشی. دانشگاه امام رضا. مشهد.
‌فرامرزی، م.، مصطفی‌زاده، ب.، موسوی، س. ف. و ترابی، م. 1384. کاربرد هوخهات در زهکش‌های زیرزمینی در منطقه رودشت اصفهان. مجله علوم کشاورزی ایران، 36(1): 13-19.
مشایخی، پ.، قربانی دشتکی، ش.، مصدقی، م. ر.، شیرانی، ح.، پناهی، م. و نوری، م.ر. 1395. برآورد پارامترهای هیدرولیکی خاک به روش معکوس با استفاده از داده‌های نفوذ استوانه‌های دوگانه. مجله تحقیقات آب و خاک ایران، 47: 829-838.
‌مهندسین مشاور سامان آبراه. 1387. گزارش خلاصه طرح 2500 هکتاری زهکشی زیرزمینی شهرستان شادگان. شرکت مشاور سامان آبراه.
نخعی، م.، امیری، و. و ودیعتی، م. 1394. تخمین معکوس پارامترها و توابع هیدرولیکی خاک غیراشباع با استفاده از داده‌های آزمون دیسک نفوذسنج. نشریه حفاظت منابع آب و خاک، 4: 39-50.
‌ولی سامانی، ج. م.، همایی، م. کوچک ‏زاده، م. و فتحی، پ. 1384. روشی ساده برای تخمین توأمان هدایت هیدرولیکی اشباع و تخلخل مؤثر خاک. مجله تحقیقات مهندسی کشاورزی، 23: 143-158.
یاری، ع.، درزی، ع.، شقاقی، م. و یاری، ر. 1389. مطالعه تغییرات هدایت هیدرولیکی اشباع خاک با زمان. نشریه آب‌وخاک (علوم و صنایع کشاورزی)، 24(1): 21-28.
Amoozegar A. and Warrick A. W. 1986. Hydraulic conductivity of saturated soils: Field methods. In klute, A. (Ed.) Methods of Soil Analysis. Part 1. 2 nd Ed. Agron. Monogr. 9. ASA, CSSA and SSSA. Madison. WI., 735-770.
Asgarzadeh H., Mosaddeghi M. R., Dexter A. R., Mahboubi A. A. and Neyshabouri M. R. 2014. Determination of soil available water for plants: consistency between laboratory and field measurements. Geoderma, 8: 226-227.
Bhattacharya A. K. and Michael A. M. 2003. Land drainage: principles, methods and applications. Konark PublishersPvt. Ltd., New Delhi.
Boast C. W. and Kirkham D. 1971. Auger hole seepage theory, Soil science Society of America Journal, 35: 365-374.
Chossat J. C. and Saugnac A. M. 1985. Relation entre conductivite hydraulique et porosite de drainage mesurees par la methode du puits et des piezometres. Sci. du Sol, 1985/3.
FAO. 1980. Drainage design factors. FAO Irrigation and Drainage. Rome, Italy.
Gupta SK. 2002. A century of subsurface drainage research in India. Journal of Irrigation and drainage systems, 16(1): 69-84.
Hooghoudt SB. 1940. Bijdragen tot de kennis Vaneenige natuurkundige Van den grand, 7. Algemeene beschonwing Van het problem Van de detail outwatering ende infiltratie door middle Van parallel loopende drains, grepples, Slotten en Kanalen. Versl Landbouwkd Onderz, 46: 515–707.
ILRI. 1972. Fieldbook for land and water management experts. Wageningen, Netherlands.
King K.W., Williams M.R., Macrae M.L., Fausey N.R., Frankenberger J., Smith D.R, Kleinman P. and Brown L. 2015. Phosphorus transport in agricultural subsurface drainage: A review. Journal of environmental quality, 44(2): 467-485.
Kumar R., Bhakar S., Jhajharia D. and Morvejalahkami B. 2012. Evaluation of drain spacing equations in the Indira Gandhi Canal command area, India. ISH Journal of Hydraulic Engineering, 18(3): 186-193.
Luthin J. N. 1966. Drainage engineering. John wiley & Sons, New York.
Moody W. 1966. Nonlinear differential equation of drain spacing. Journal of Irrigation and Drainage Engineering, 92(2): 1–10.
Pali A.K., Katre P. and Khalkho D. 2014. An unsteady subsurface drainage equation incorporating variability of soil drainage properties. Water Resources Management, 28(9): 2639-2653.
Pendy R.S., Bhattachaya A.K., Singh O.P. and Gupta S. K. 1992. Drawdown solution with variable drainage porosity. Journal of Irrigation and Deainafe Engineering, 118 (3): 382- 396.
Russo D., Bresler E., Shani U. and Parker J.C. 1991. Analysis of infiltration events in relation to determining soil hydraulic properties by inverse problem methodology. Water Resour. Res, 27: 1361–1373.
Simunek J., Wendroth O. and Van Genuchten M.Th. 1998. Parameter estimation analysis of the evaporation method for determining soil hydraulic properties. Soil Sci. Soc. Am. J, 62:894-905.
Simunek J., Sejna M. and Van Genuchten M.Th. 2012. HYDRUS: model use, calibration and validation. American Society of Agricultural and Biological Engineers, 55(4): 1261-1274.
Skaggs R.W. 1976. Determination of the hydraulic conductivity-drainable porosity ratio from water table measurements. Trans ASAE, 19: 73–80.
Snell A.W. and Van Schilfgaarde J. 1964. Four-well method of measuring hydraulic conductivity in saturated soils. Trans. ASAE, 91(7): 83-87.
Stephens D.B., Hsu K.C., Priksat M.A., Ankeny M.D., Blandford N., Roth T.L., Kelsey J.A. and Whitworth J.R. 1998. A comparison of estimated and calculated effective porosity. Hydrogeology Journal, 6: 156-165.
Taylor G.S. 1960. Drainable porosity evaluation from outflow measurements and its use in drawdown equations. Soil. Sci, 90: 38-345.
Upadhyaya A. and Chauhan H.S. 2000. An analytical solution for bi-level drainage design in the presence of evapotranspiration. Journal of Agricultural Water Management, 45: 169-184.
USBR. 1984. Drainage manual. A Water Resources Tech. Publication. Second printing. Denver, USA, US Dept. of Interior, Bureau of Reclamation, 286.
Vanclooster M., Javaux M. and Lambot S. 2007. Recent advances in characterizing flow and transport in unsaturated soil at the core and field. Estudios de la Zona No Saturada del Suelo, 3: 19-35.
Van Schilfgaarde J. 1963. Design of tile drainage for falling water tables. Journal of the Irrigation and Drainage Division, 89(2): 1-12.
CAPTCHA Image