Comparison of the Performance of MISDc and HBV Hydrological Models in Runoff Simulation of Kakareza Basin in Lorestan Province

Document Type : Applied Article

Authors

Lorestan University, Iran.

Abstract

Hydrological models are useful tools in hydrological researches, testing research hypotheses and understanding hydrological processes, designing, evaluating and allocating water resources (flood plain assessment and ecosystem conservation). Hydrology models are simplified representations of the actual hydrology system and help to study the function of the basin in response to various inputs and to better understand hydrological processes. Due to the variety of hydrological models, it is difficult to choose a model. Therefore, comparative evaluation of models is needed to determine the capability of models in the study area. In this study, MISDc and HBV semi distributed models are used to simulate the flow of Kakareza watershed. For this instance a 9 year simulation period (2002-2010) was selected. The accuracy of model performance was evaluated using Nash-Sutcliffe (NS) and the coefficient of determination (R2) criterion. The Nash-Sutcliffe values and coefficient of determination for MISDc model were 0.83 and 0.84, for HBV model, 0.79 and 0.80 for 2002-2008 calibration period respectively and for MISDc model, it was 0.88 and 0.89, and for the HBV model, it is 0.72 and 0.73, for the 2009-2010 validation period, which indicates the better performance of the MISDc model in daily flow simulation in the study area. The results show that the MISDc model has performed better than the HBV model and it is suggested to use this model in hydrological studies of the region.

Keywords

Main Subjects


امیری، ع.، زینی وند، ح.، طهماسبی‌پور ن. و حقی‌زاده. ع. 1397. بررسی کارایی مدل MISDc در شبیه‏سازی رواناب حوضه آبخیز کشکان افرینه. نشریه سامانه‏های سطوح آبگیر باران، 6(19): 53-62
هاونگی، م. و مساح بوانی. ع.ر. 1393. مقایسه عملکرد دو مدل هیدرولوژی IHACRES و HBV light در شبیه‏سازی حوضه دز. دهمین همایش ملی علوم و مهندسی آبخیزداری (آبخیزداری پایدار). دانشگاه بیرجند، بیرجند
یعقوبی، م. و مساح بوانی. ع.ر. 1393. تحلیل حساسیت و مقایسه عملکرد سه مدل مفهومی HBV، IHACRCE و HEC-HNS در شبیه‏سازی بارش-رواناب پیوسته در حوضه‏های نیمه خشک (بررسی موردی: حوضه اعظم هرات-یزد). مجله فیزیک زمین و فضا، 40(2): 153-172.
Abebe N., Ogden F.L. and Pradhan N.R. 2010. Sensitivity and uncertainty analysis of the conceptual HBV rainfall–runoff model: Implications for parameter estimation, Journal of Hydrology, 389: 301-310.
Agha kouchak N. and HBIB E. 2012. An educational model for ensemble streamflow simulation and uncertainty analysis .hydrology and Earth system sciences, 17: 445-452
Alessio C., Daniele M., Christian M., Stefania C. and Brocca L. 2019. Combining a rainfall–runoff model and a regionalization approach for flood and water resource assessment in the western Po Valley, Italy, Hydrological Sciences Journal, 65(3): 348-370.
Barbetta S., Coccia G. Moramarco T. Brocca L. and Todini E. 2017. The multi temporal/multi-model approach to predictive uncertainty assessment in real-time flood forecasting, Journal of Hydrology, 551: 555-576.
Bashar K. 2012. Comparative Performance of Soil Moisture Accounting Approach in Continuous Hydrologic Simulation of the Blue Nile. Nile Basin Water Science & Engineering Journal, 5: 2-10.
Bergstrom S. 1976. Development and application of a conceptual runoff model for Scandinavian catchments, Publisher Department of Water Resources Engineering, Lund Institute of Technology, University of Lund.
Brocca L, Melone F, Moramarco T. 2008. On the estimation of antecedent wetness conditions in rainfall-runoff modelling. Hydrological Processes, 22(5): 629–642.
Brocca L. Melone F. Moramarco T. Singh VP. 2009. Assimilation of observed soil moisture data in storm rainfall-runoff data. Journal of Hydrologic Engineering ASCE, 14(2): 153–165.
Brocca L., Camici S. Tarpanelli A. Melone F. and Moramarco. T. 2011. Analysis of climate change effects on floods frequency through a continuous hydrological modelling. In: Climate Change and its Effects on Water Resources. Springer, Dordrecht, the Netherlands.
Brocca., L. Melone F. Moramarco T. Penna D. Borga M. Matgen P. Gumuzzio A. Martinez-Fernández J. and Wagner W. 2013 Detecting threshold hydrological response through satellite soil moisture data. Die Bodenkultur, 64 (3–4): 7–12.
Camici S., Ciabatta L., Massari C. and Brocca L. 2018. How reliable are satellite precipitation estimates for driving hydrological models: a verification study over the mediterranean area, Journal of Hydrology, 563: 950-961.
Chow V.T, Maidment D.R. and Mays L.W. 1988. Applied hydrology, McGrawHill. New York.
Corradini C. Melone F. and Ubertini L. 1995. A semi-distributed model for direct runoff estimate. In Applied Simulation and Modelling, Hamza MH (ed). IASTED ACTA Press: Anahheim (CA): 541– 545
Corradini C., Morbidelli R., Saltalippi C. and Melone F. 2002. An adaptive model for flood forecasting on medium size basins. In Applied Simulation and Modelling, Ubertini L (ed). IASTE Acta Press: Anaheim (CA): 555–559.
Doorenbos J. and Pruitt W.O. 1997. Background and development of methods to predict reference crop evapotranspiration (ETo). In FAO-ID-24, Appendix II.
Famiglietti J.S. and Wood E.F. 1994. Multiscale modeling of spatially variable water and energy balance processes. Water Resour. Res, 11: 3061–3078.
Gupta V.K., Waymire E. and Wang C.T. 1980. A representation of an instantaneous unit hydrograph from geomorphology. J. Water Resources Manage, 16(5): 855–862.
Hashim Isam J., Hamideh K. and Ranjan S. 2020. Comparative study of conceptual versus distributed hydrologic modelling to evaluate the impact of climate change on future runoff in unregulated catchments, Journal of Water andClimate Change, 11(2): 341–366.
Karlinger M.R. and Troutman B.M. 1985. An assessment of the instantaneous unit hydrograph derived from the theory of topologically random networks. Water Resour. Res, 21: 1693–1702.
Lorrai, M. and H.M. Sechi. 1995. Neural Nets for Modeling Rainfall- Runoff Transformation. Water Resources Management, 9: 299-313.
Melone F., Neri N., Morbidelli R. and Saltalippi C. 2001. A conceptual model for flood prediction inbasins of moderate size. In Applied Simulation and Modelling, Hamza MH (ed). IASTED Acta Press: Anaheim, (CA): 461–466.
Mengistu K.T. 2009. Watershed hydrological response to change in land use and land cover and management practices at hare watershed ,Ethiopia.
Normand S., Konz M. and Merz J. 2010 . Anapplication of the HBV model to the Tamor Basin in Eastern Nepal. Journal of Hydrology and meteorology, 7(1): 49-58.
Schaefli B. and Gupta H.V. 2007. Do Nash values have value? Hydrological Processes, 21(15): 2075-2080
Schreider sy ,smith DI and Jokeman AJ. 2000. climate change impacts on urban flooding. Climate change, 47: 91-115.
Siebert J. and Vis M. J. P. 2012. Teachinghydrological modeling with a userfriendly catchment runoff-model software package, Earth Syst. Sci, 16: 3315-3325.
Smith D.R., King K.W., Johnson L., Francesconi W., Richards P., Baker D., Sharpley A.N. 2015. Surface runoff and tile drainage transport of phosphorus in the midwestern united st. Schreider sy ,smith DI and Jokeman AJ. 2000. climate change impacts on urban flooding. Climate change. Jornal of Environmental Quality, 47: 91-115.
Klaus V. Maik H. Axel B. and Deborah L. 2018. Hydrological model parameter (in) stability–“crash testing” the HBV model under contrasting flood seasonality conditions. Journal Hydrological Sciences Journal, 63(7): 1-17.
CAPTCHA Image