Methodology for Groundwater Monitoring Network Assessment and Design, Part 2: IranEvaluation of Monitoring Network by Acceptance Probability Method; Case Study: Shirvan Aquifer, North Khorasan, Iran

Document Type : Applied Article

Authors

1 Faculty member, Hydroinformatics Department, East Water and Environmental Research Institute (EWERI), Mashhad, Iran

2 Assistant Professor, Department of Water Science and Engineering, Kashmar Higher Education Institute, Kashmar, Iran

3 Manager of Water Resources Basic Studies, Regional Water Authority of North Khorasan, Bojnord, Iran.

4 Expert of Water Resources Basic Studies, Regional Water Authority of North Khorasan, Bojnord, Iran

Abstract

Groundwater monitoring networks provide important data which are necessary to understand the dynamics of hydrogeological systems. Since the cost of the installation and maintenance of groundwater monitoring networks is extremely high, optimal design and the assessment of the effectiveness of the monitoring networks is necessary. This paper presents the application of a newly developed geostatistical method based on the acceptance probability concept, to optimize the existing network of observation wells in the Shirvan alluvial aquifer, located in North Khorasan province. To this aim, by choosing a suitable semi-variogram and using ordinary kriging, the acceptance probability in the aquifer was calculated. Then, based on the spatial pattern of groundwater level, the acceptance probability was calculated for various parts of the aquifer and the acceptance accuracy values were analyzed at different levels of probability. The results showed that based on the existing observation wells network, 19.2% of the aquifer area has a very high acceptance accuracy. On the other hand, by modifying the network of existing observation wells and adding suggested points, 46.7% of the aquifer area will have a very high acceptance accuracy. Therefore, the installation of new observation wells in the proper locations will increase the accuracy acceptance and improve the efficiency of the observation well network.

Keywords

Main Subjects


حسنی پاک، ع.ا. 1392. زمین‌آمار (ژئواستاتیستیک). دانشگاه تهران. چاپ پنجم. تهران. ایران.
شرکت مدیریت منابع آب ایران. 1395. گزارش تمدید ممنوعیت بهره‌برداری از منابع آب‌زیرزمینی دشت قوچان ـ شیروان، تهران. 
معاونت برنامه‌ریزی و نظارت راهبردی رئیس‌جمهور. 1393. نشریه شماره 665- دستورالعمل رفتارسنجی کمی آب‌های زیرزمینی، تهران.
مقصود سنگ آتش، س.، خاشعی سیوکی، ع.، پوررضا بیلندی، م. و شفیعی، م. 1395. طراحی شبکه پایش کیفی آب زیرزمینی با استفاده از روش زمین آمار (مطالعه موردی آبخوان مشهد). پایان‌نامه کارشناسی ارشد. بیرجند، ایران. 
مقصود سنگ آتش، س.، خاشعی سیوکی، ع.، پوررضا بیلندی، م. و شفیعی، م. 1397. کاربرد روش احتمال پذیرش در ارزیابی شبکه پایش کیفی کلر آب زیرزمینی (مطالعه موردی آبخوان مشهد). تحقیقات منابع آب ایران، 14(1): 253ـ256. 
Ahmadi S.H. and Sedghamiz A. 2007. Geostatistical analysis of spatial and temporal variations of groundwater level. Environmental Monitoring Assessment, 129(1): 277–294.
Chandan K.S. and Yashwant B.K. 2017. A GIS Based Design of Groundwater Level Monitoring Network Using Multi-Criteria Analysis and Geostatistical Method. Water Resources Management, 31(13): 4149-4163.
Chao Y., Qian H., Fang Y. and Wang H. 2011. Optimum design of groundwater level monitoring network in Yinchuan plain. Water Resource and Environmental Protection, 1: 278–281.
Cheng K.S., Wei C., Cheng Y.B., Yeh H.C. and Liou J.J. 2008. Rain-gauge network evaluation and augmentation using geostatistics. Hydrological Processes, 22(14): 2555–2564.
Gundogdu K.S. and Guney I. 2007. Spatial analyses of groundwater levels using universal kriging. Journal of Earth System Science, 116(1): 49–55.
Manegold J. 2003. Using the Model Builder of ArcGIS 9 for Landscape Modeling. In: Buchmann E. & Ervin S. (Eds.): Proceedings of International Seminar on New Technologies of the International Master Program in Landscape Architecture. Anhalt University of Applied Sciences, Heidelberg, Germany.
Prakash M. R. and Singh V. S. 2000. Network design for groundwater monitoring – A case study. Environmental Geology, 39: 628–632.
Raeisi A., Ghafouri H.R. and Moslemzadeh M. 2018. Minimization of Groundwater Observation Wells Using Geostatistics and Optimization Technique (Case study: Dezfoul-Andimeshk plain). Journal of Water and Soil Conservation, 25(3): 79-96.
Reed P. and Minsker B.S. 2004. Striking the balance: long-term groundwater monitoring design for conflicting objectives. Journal of Water Resources Planning and Management, 130(2): 140-149.
Sarma D.D. 2009. Geostatistics with Applications in Earth Sciences. Capital publishing company. India.
Shafiei M., Ghahraman B., Saghafian B., Pande S., Gharari S. and Davary K. 2014. Assessment of rain-gauge networks using a probabilistic GIS based approach. Hydrology Research, 45(4-5): 551-56.
Theodossiou N. and Latinopoulos P. 2006. Evaluation and optimisation of groundwater observation networks using the kriging methodology. Environmental Modeling and Software, 21(7): 991–1000.
Varouchakis A. and Hristopulos D.T. 2013. Comparison of stochastic and deterministic methods for mapping groundwater level spatial variability in sparsely monitored basins. Environmental Monitoring Assessment, 185(1): 1–19.
Webster R. and Oliver M.A. 2001. Geostatistics for environmental scientists. John Wiley and Sons. Ltd. Chichester, England.
Wei F., Yuexiao J., Yin L., Wei L, Zhiyu C. and Cheng, HU. 2021. Study on the Optimization of Groundwater Monitoring Network in Key Areas of Jianghan Plain in Hubei Province. Northwestern Geology, 54(3): 222-228.
Yang F. Cao S. Liu X. and Yang K. 2008. Design of groundwater level monitoring network with ordinary kriging. Journal of Hydrodynamics, 20(3): 339–346.
CAPTCHA Image
Volume 9, Issue 3 - Serial Number 25
Groundwater balancing: easy yet difficult to imitate!
December 2022
Pages 1-10
  • Receive Date: 11 March 2022
  • Revise Date: 11 May 2022
  • Accept Date: 30 May 2022