Laboratory Investigation of Scour Hole Location Downstream of Dams and its Prediction Using Data Mining Methods

Document Type : Applied Article

Authors

1 Ph.D. Student, Department of Water Engineering, Tabriz University, Iran

2 Associate Professor, Department of Earth Sciences, Tabriz University, Iran

3 Associate Professor, Department of Water Engineering, Tabriz University, Iran

Abstract

Various factors affect the location of the scour hole formed by the falling flow. Among these factors, we can mention the tailwater depth, the height of the falling flow, the velocity of the flow, the cross-section of the flow and the amount of air entering the flow. In the present study, the location of the formation of scour holes was investigated in the hydraulic laboratory of Tabriz University. Also, the ability of artificial neural networks (ANN) and tree models (M5P tree model) in estimating the location of scour holes downstream of dams was investigated using laboratory data and the results of these two models have been compared with the multivariate nonlinear regression method. The results showed that all three methods, the artificial neural network, the M5 tree model and regression method provide relatively accurate results in predicting the location of scour hole. RMSE value for ANN=1.75, M5=3.75 and Regression=3.89, but due to providing simple linear relationships by the M5 tree model, this method can be used as a practical method to determine the location of scour hole. The analysis of the M5 tree model showed that 4 equations with different linear equations model the pattern of changes in the location of scour hole. In addition, the analysis of the laboratory results showed that the regression equations presented in the present study compared to the common method (using projectile equations) have much less error when predicting the location of scour hole. Also, the laboratory results showed that the head passing through the structure is the most effective parameter in the formation of the scour hole.

Keywords

Main Subjects


حسینی، خسرو، نوخاسته، حامد، کرمی، حجت، و سلامتیان، سید امین. (1395). مطالعه عددی آب‌شستگی جت ریزشی آزاد. مهندسی عمران فردوسی، 28(2), 9-22، . doi: 10.22067/civil.v28i2.36669
سلماسی، فرزین، نهرین، فرناز، و طاهری اقدم، علی. (1401). استفاده از شبکه عصبی مصنوعی و مدل درختی M5 برای تعیین ضریب دبی سرریز لبه پهن مستطیلی .نشریه مهندسی عمران امیرکبیر، 54(12)، 4458-4435. doi: 10.22060/ceej.2022.18990.7021
شریف زاک، مسعود، و بارانی، غلام‌عباس. (1390). پیش بینی دبی جریان در کانال‏های مرکب با استفاده ازالگوریتم شبکه‏‌های عصبی. اولین کنفرانس ملی عمران توسعه. دانشگاه آزاد اسلامی زیباکنار، رشت، ایران.
صبا، حمیدرضا، کمالیان، محسن، و رئیسی‌زاده، احسان. (1397). تعیین آستانه لغزش پایداری شیروانی و بهینه یابی حجم عملیات خاکریزی سد خاکی همگن با استفاده از ترکیب شبکه عصبی و الگوریتم ژنتیک. نشریه مهندسی عمران امیرکبیر، 50(4)، 747-754. doi:10.22060/ceej.2017.11051.4965
طاهری اقدم، علی، نورانی، بهرام، ارونقی، هادی، و سلماسی، فرزین. (1400). محاسبه ارتفاع آبشار در پایین‌دست سرریزهای اوجی جهت کنترل پرش هیدرولیکی. مدل‏سازی و مدیریت آب و خاک، 1(1)، 1-12. doi: 10.22098/MMWS.2021.1174
فلاحی، محمد  رضا،  وروانی، هادی، و گلیان، سعید. (1390). پیش‏بینی بارش با استفاده از مدل رگرسیون درختی به‌‏منظور کنترل سیل. پنجمین کنفرانس سراسری آبخیزداری و مدیریت منابع آب و خاک کشور. انجمن مهندسی آبیاری و آب ایران، کرمان، ایران. 
کانتاردزیک، مهمد. (1392). داده کاوی. مترجم: امیر علیخوان زاده. انتشارات علوم رایانه. چاپ اول. مشهد، ایران.
Bhattacharya, B., & Solomatin, D.P. (2004). Neural networks and M5 model trees in modeling water level-discharge relationship. Neurocomputing. 63, 381-396. https://doi.org/10.1016/j.neucom.2004.04.016
He, Y., Zhu, D.Z., Zhang, T., Shao, Y., & Yu, T. (2017). Experimental observations on the initiation of sand-bed erosion by an upward water jet. Journal of Hydraulic Engineering, 143(7). 06017007. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001302
Hall, m., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witen, L.H. (2009). The WEKA Data Mining Software: An Update. ACM SIGKDD Explorations Newsletter, 11(1), 10-18.
Karamigolbaghi M., Ghaneeizad S.M., Atkinson J.F., Bennett S.J. and Wells R.R. (2017). Critical assessment of jet erosion test methodologies for cohesive soil and sediment. Geomorphology,  295, 529-536. https://doi.org/10.1016/j.geomorph.2017.08.005
Mason P.J. (1983). Energy dissipating crest splitters for concrete dams, Water Power and Dam Construction, 35(10), 37-40.
Pagliara, S., Roy, D., & Palermo, M. (2009). 3D plunge pool scour with protection measures, Journal of Hydro-environment Research., 4, 225-233. https://doi.org/10.1016/j.jher.2009.10.014
Pal, M., (2006). M5 model tree for land cover classification. International Journal of Remote Sensing, 27(4), 825-831. https://doi.org/10.1080/01431160500256531
Sattari, M.T., Anli, A.S, Apaydin, H. & Kodal, S. (2012). Decision trees to determine the possible drought periods in Ankara. Atmosfera, 25, 65-83.
Salmasi, F., Nouri, M., Sihag, P. & Abraham, J. (2021). Application of SVM, ANN, GRNN, RF, GP and RT models for predicting discharge coefficients of oblique sluice gates using experimental data, Water Supply, 21(1), 232–248. https://doi.org/10.2166/ws.2020.226
Solomatine, D.P., & Xue, Y. (2004). M5 model trees and neural networks: Application to flood forecasting in the upper reach of the Huai River in China. Journal of Hydrologic Engineering, 9, 491–501. doi: 10.1061/(ASCE)1084-0699(2004)9:6(491)
United States Bureau of Reclamation (USBR). (1960). Design of small dams. United States Department of the Interior, United States Government Printing Office. 1st Ed. Denver, 282–291.
CAPTCHA Image