Investigation and Ranking of Water Security in Study Areas of South Khorasan Province Using Gray Analysis

Document Type : Applied Article

Authors

1 MSc. Student in Irrigation, Department of Water Science and Engineering, University of Birjand, Birjand, Iran

2 Associate Professor, Department of Water Science and Engineering, University of Birjand, Birjand, Iran

3 PhD. in Water Resources Engineering, Lorestan University, Khorramabad, Iran

Abstract

In South Khorasan province, water shortage is one of the main limiting factors for the development of economic activities in the coming decades. In this province, similar to other parts of the country, the optimal use of water in the form of culture has not yet found its special place, so achieving a relative equilibrium in the supply and demand of water is a basic and essential principle. This is not possible except by creating a comprehensive system in water management and consequently water security. to prevent crises caused by water insecurity, it is necessary to identify rapid developments and defective trends in current water management based on the climate, social, economic, and other realities in each region. In this regard, the current state of water resources in this province was monitored and evaluated by creating a set of indicators. Then, with the help of gray analysis, which is a kind of hierarchical ranking method, the plains of the province were ranked in terms of water security.  The results of the gray analysis also showed that the highest score of water security level is in the Deh-e-Salm plain (0.524), Dehno_mighan plain (0.519), and chahak-Mousavieh plain (0.504). Their degree of Security is mainly interpreted by their ability to reduce the risks of water shortage and water scarcity, although it will never be secure to study unless there is a risk of water shortage and water scarcity. There are important study areas such as Birjand Plain (0.462) that are currently in water insecurity. The highest levels of Water insecurity are observed in the South Khorasan Province, Sarayan (0.268) and Boshrouyeh (0.363).

Keywords


شرکت آب منطقه‌ای خراسان جنوبی. 1394. گزارش سیمای منابع آب، شرکت آب منطقه‌ای استان خراسان جنوبی، http://www.skhrw.ir.
صفوی ح. و گل محمدی م. 1395. ارزیابی عملکرد سیستم های منابع آب با استفاده از معیارهای اطمینان پذیری, برگشت پذیری و آسیب پذیری فازی. تحقیقات منابع آب ایران، 12(1): 68-83. 
عربی یزدی، ا، نیک نیا، ن، مجیدی ن و امامی، ح. 1393. بررسی امنیت آبی در اقلیم‏های خشک از دیدگاه شاخص ردپای آب (مطالعه موردی: استان خراسان جنوبی) مجله آبیاری و زهکشی ایران، 8(4): 735-746.
فلکی ایلخچی، ق.، و احمدی، ح.، و حصاری، ب. 1399. ارزیابی اثر تغییراقلیم و سیاست های اجرایی بر آسیب پذیری سیستم منابع آب. مجله آبیاری و زهکشی ایران، 14(3): 881-893. 
میر، ر.، و عزیزیان، غ.، و مساح بوانی، ع.، و گوهری، ع. 1399. ارزیابی سیستمی راهکارهای سیاستی کاهش آسیب پذیری دشت سیستان به نوسان و کاهش منابع آب. علوم آب و خاک (علوم و فنون کشاورزی و منابع طبیعی)، 24(3): 131-149.

Adger W.N. 2007. Vulnerability, Global Environmental Change, 16: 268–281.
Al-Otaibi A. and Abdel-Jawadm M. 2007. Water security for Kuwait. Desalination, 214: 299-305.
Chu H.D., Xu G.L., Yasufuku N., Yu Z., Liu P.L. and Wang J.F. 2017. Risk assessment of water inrush in karst tunnels based on two-class fuzzy comprehensive evaluation method. Arab J Geosci, 10: 179.
Deliang S., Jianping W., Fengtai. Z., Weici. .S. and Hong H. 2018. Evaluating Water Resource Security in Karst Areas Using DPSIRM Modeling, Gray Correlation,and Matter–Element Analysis. Sustainability, 10.3934.
Doeffinger T. and Hall J. H. 2021. Assessing water security across scales: A case study of the United States. Applied Geography, 134: 102500
Ginkel K. C.H., Hoekstra Y., Buurman. J. and Hogeboom R. J. 2018. Urban Water Security Dashboard: Systems Approach to Characterizing the Water Security of Cities. Journal of Water Resources Planning and Managemen, 144: 10.1061.
Ingram J.C., Franco G., Rumbaitis-del Rio C. and Khazai B. 2006. Post-disaster recovery dilemmas: challenges in balancing short-term and long-term needs for vulnerability reduction, International Journal of Environmental Science and Policy, 9: 607-613.
Kaynia A.M. 2008. Probabilistic Assessment of Vulnerability to Landslide: Application to the village of Lichtenstein, Baden-Wurttemberg, Germany. Engineering Geology, 101 (2008): 33–48. 
Mahmoudi A. Javed S. A. ., Liu S. and Deng X. 2020. Distinguishing coefficient driven sensitivity analysis of GRA model for intelligent decisions: application in project management. Technological and Economic Development of Economy, 26(3): 621-641. 
Nazif S. Karamouz M. Yousefi M. and Zahmatkesh Z. 2013. Increasing Water Security: An Algorithm to Improve Water Distribution Performance, Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), 27(8): 2903-2921.
Nezami R.S. Nazariha M. Moridi A. and Baghvand A. 2013. Environmentally Sound Water Resources Management in Catchment Level using DPSIR Model and Scenario Analysis. International Journal of Environmental Research, 7(3): 569-580.
OECD (Organisation for Economic Co-operation and Development). 1993. Environmental indicators: basic concepts and terminology, background paper no.1 OECD Core Set, OECD, Paris. A synthesis report by the Group on the State of the Environment OCDE/GD(93)179. 
Sahoo M.M. Patra K.C. Swain J.B. and Khatua K.K. 2017.  Evaluation of water quality with application of Bayes rule and entropy weight method. European Journal of Environmental and Civil Engineering. 21: 730–752. 
Steckley M. 2006. The he Impact of Governance on Disaster Vulnerability. UWSpace. Ontario, Canada, Thesis.
Veettil A.V. and Mishra A.K. 2016. Water security assessment using blue and green water footprint concepts. J. Hydrology, 542: 589–602. 
Wang W. Tang D. Pilgrim M. and Liu J. 2015. Water Resources Compound Systems: A Macro Approach to Analysing Water Resource Issues under Changing Situations, Water:8: 2–12. 
World Bank. 2017. Iran Economic Monitor.
Xia X.F. Sun Y. Wu K. and Jiang Q.H. 2016. Optimization of a straw ring-die briquetting process combined analytic hierarchy process and gray correlation analysis method. Fuel Process. Technol, 152: 303–309.
Zhang F. Wang L. and SuW. 2016. Evaluation of land ecological security in Chongqing based on the matter–element analysis-DPSIR model. China Environmental Sciencece, 36: 3126–3134.
CAPTCHA Image