Investigation of Changes in the Amount and Distribution of Precipitation and Temperature in Iran and Their Effects on Extreme Events

Document Type : Applied Article

Authors

1 Assistant Professor, Department of Ecology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.

2 Professor, Water Sciences and Engineering Department, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

Global warming in recent decades has caused significant changes in precipitation and temperature, including changes in the mean and standard deviation of these variables and changes in the intensity and frequency of climatic extremes (floods and droughts). Given the importance of these changes in water resources management, it is crucial to study the trends in these variables. In this study, in 12 selected stations in different climatic regions in Iran, the changes in monthly and annual precipitation and mean temperature during 1961-1990 and 1991-2020 were examined. The results of Mann-Kendall test showed in most stations precipitation had an increasing trend in the first period, and a decreasing trend in the second period; although in both periods the trend was not significant (Z<1.645). The mean temperature has increased in both periods, which in the second period has increased with a higher level of confidence (Z>2,576) and greater slope than in the first period. The average annual rainfall has decreased in most stations, and the average annual temperature has increased in all stations. The distribution of precipitation and temperature showed that in some stations, the probability of occurrence of extreme events and hot and cold periods in the second period has increased compared to the first period. In some other stations, droughts/floods are more/less likely to occur. This indicates that the activity of air masses affecting each station can be intensified or weakened due to climate change.

Keywords

Main Subjects


اسدی، اشرف، و حیدری، علی. (1390). تحلیل تغییرات سری‌های دما و بارش شیراز طی دوره 1951-2005. جغرافیا و برنامه‌ریزی محیطی، 22(41)، 137-152. dor: 20.1001.1.20085362.1390.22.1.10.1
بهزادی، فرهاد، جوادی، سامان، یوسفی، حسین، مریدی، علی، و هاشمی شاهدانی، سیدمهدی. (1401). تعیین تأثیر تغییر اقلیم بر خشکسالی آب زیرزمینی با استفاده از برون‌داد مدل‌های CMIP6 (مطالعه موردی: دشت شهرکرد). اکوهیدرولوژی، 9(2)، 436-419. doi: 10.22059/IJE.2022.342077.1633
حجازی زاده، زهرا، و پروین، نادر. (1388). بررسی تغییرات دما و بارش تهران طی نیم قرن اخیر. جغرافیا و برنامه‌ریزی منطقه‌ای، پیش شماره پاییز و زمستان 1388، 43-56. 
رئیسی نافچی، عاطفه، و سلطانی محمدی، امیر. (1395). بررسی تغییرات زمانی بارندگی و میانگین، حداقل و حداکثر دما (مطالعه موردی: ایستگاه شهرکرد). نیوار، 94-95، 69-80. doi: 10.30467/nivar.2016.42661
زرین، آذر، و داداشی رودباری، عباسعلی. (آ1400). پیش‌نگری همادی نمایه‌های خشکسالی در ایران مبتنی بر برونداد چند مدلی CMIP5. پژوهش‌های تغییرات آب و هوایی، 2(7)، 82-71. doi: 10.30488/CCR.2021.317280.1058
زرین، آذر، و داداشی رودباری، عباسعلی. (ب1400). پیش‌نگری دمای ایران در آینده نزدیک (2021-2040) بر اساس رویکرد همادی چند مدلی CMIP6. پژوهش‌های جغرافیای طبیعی، 53(1)، 90-75. doi: 10.22059/JPHGR.2021.308361.1007551
زرین، آذر، داداشی رودباری، عباسعلی، و صالح‌آبادی، نرگس. (1400). بررسی بی‌هنجاری و روند دمای ایران در پهنه‌های مختلف اقلیمی با استفاده از مدل‌های جفت شده پروژه مقایسه متقابل مرحله ششم (CMIP6). ژئوفیزیک ایران، 15(1)، 35-54. doi: 10.30499/IJG.2020.249997.1292
سرابی، مجتبی، دستورانی، محمدتقی، و زرین، آذر. (آ1399). بررسی تأثیرات تغییرات اقلیمی آینده بر وضعیت دما و بارش (مطالعه موردی: حوضه آبخیز سد طرق مشهد). هواشناسی و علوم جو، 3(1)، 63-83. doi:  10.22034/JMAS.2021.278862.1129
سرابی، مجتبی، دستورانی، محمدتقی، و زرین، آذر. (ب1399). اثر تغییر اقلیم آینده بر پاسخ هیدرولوژیک در حوضه آبخیز سد طرق مشهد. هواشناسی و علوم جو، 3(4)، 330-310. doi: 10.22034/JMAS.2021.297763.1149
عساکره، حسین. (1386). تغییرات زمانی-مکانی بارش ایران زمین طی دهه‌های اخیرِ. جغرافیا و توسعه، 5(10)، 164-145. doi: 10.22111/GDIJ.2007.3669
فرزندی، محبوبه، رضایی پژند، حجت، و میرکماندار، بهاره. (1399)، تحلیل جزیره گرمایی و بررسی روند غیرخطی تغییرات دمای 130 ساله مشهد. هواشناسی و علوم جو، 3(4)، 389-375. doi: 10.22034/JMAS.2021.296910.1148
کامیابی، سعید، و عبدی، کمیل. (1399). آشکارسازی و تحلیل روند تغییر اقلیم (بارش و دما) در محدوده ساری. علوم و تکنولوژی محیط‌زیست، 22(7)، 179-165. doi: 10.22034/JEST.2019.43898.4642
میان‌آبادی، آمنه، و داوری، کامران. (1399). ابهام‌زدایی از مفاهیم پایه درحوزه مدیریت آب: «سازگاری با کم‌آبی». آب و توسعه پایدار، 7(1)، 70-61. doi:10.22067/JWSD.V7I1.81441
ناصرزاده، محمدحسین، دوستکامیان، مهدی، بیرانوند، آذر، قهرمانی، فاطمه، و بیات، علی. (1391). توزیع فضایی روند تغییرات فصلی و سالانه دما و بارش (مطالعه موردی: استان خوزستان). اندیشه جغرافیایی، 6(11)، 31-47.

Abbaspour, K. C., Faramarzi, M., Ghasemi, S. S., & Yang, H. (2009). Assessing the impact of climate change on water resources in Iran. Water Resources Research, 45(10), W10434. https://doi.org/10.1029/2008WR007615
Afshar, N. R., & Fahmi, H. (2019). Impact of climate change on water resources in Iran. International Journal of Energy and Water Resources, 3(1), 55–60. https://doi.org/10.1007/s42108-019-00013-z
Almazroui, M., Ashfaq, M., Islam, M. N., Rashid, I. U., Kamil, S., Abid, M. A., O’Brien, E., Ismail, M., Reboita, M. S., Sörensson, A. A., Arias, P. A., Alves, L. M., Tippett, M. K., Saeed, S., Haarsma, R., Doblas-Reyes, F. J., Saeed, F., Kucharski, F., Nadeem, I., … Sylla, M. B. (2021). Assessment of CMIP6 Performance and Projected Temperature and Precipitation Changes Over South America. Earth Systems and Environment, 5(2), 155–183. https://doi.org/10.1007/s41748-021-00233-6
Andrade, C. W. L., Montenegro, S. M. G. L., Montenegro, A. A. A., Lima, J. R. de S., Srinivasan, R., & Jones, C. A. (2021). Climate change impact assessment on water resources under RCP scenarios: A case study in Mundaú River Basin, Northeastern Brazil. International Journal of Climatology, 41(S1), E1045-E1061. https://doi.org/10.1002/joc.6751
Azadi, F., Ashofteh, P.-S., Shokri, A., & Loáiciga, H. A. (2021). Simulation-Optimization of Reservoir Water Quality under Climate Change. Journal of Water Resources Planning and Management, 147(9),  1463. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001436
Bari Abarghouei, H., Asadi Zarch, M. A., Dastorani, M. T., Kousari, M. R., & Safari Zarch, M. (2011). The survey of climatic drought trend in Iran. Stochastic Environmental Research and Risk Assessment, 25(6), 851–863. https://doi.org/10.1007/s00477-011-0491-7
Budyko, M. I. (1974). Climate and life. Vol. xvii. Academic Press. New York, USA. 508 pp
Burroughs, W. (2003). Climate: Into the 21st Century. First Edition. Cambridge University Press. Cambridge, UK. 240 pp.
Bustos Usta, D. F., , Teymouri, M., Chatterjee, U., & Bandyopadhyay, N. (2022). Projections of atmospheric changes over Iran in 2014-2050 using the CMIP6- HighResMIP experiment. Arabian Journal of Geosciences, 15, 1335. https://doi.org/10.1007/s12517-022-10639-9
Challinor, A. J., Watson, J., Lobell, D. B., Howden, S. M., Smith, D. R., & Chhetri, N. (2014). A meta-analysis of crop yield under climate change and adaptation. Nature Climate Change, 4(4), 287–291. https://doi.org/10.1038/nclimate2153
de Martonne, E. (1925). Traité de Géographie Physique. 3 tomes. Fourth Edition. Librairie Armand Colin. Paris, France.
Evans, J. P. (2009). 21st century climate change in the Middle East. Climatic Change, 92(3–4), 417–432. https://doi.org/10.1007/s10584-008-9438-5
Fazel-Rastgar, F. (2021). Synopsis of the dramatic climate change in Iran: a seasonal synoptic analysis. Arabian Journal of Geosciences, 14(9), 1–31. https://doi.org/10.1007/s12517-021-07154-8
Ghazi, B., Jeihouni, E., & Kalantari, Z. (2021). Predicting groundwater level fluctuations under climate change scenarios for Tasuj plain, Iran. Arabian Journal of Geosciences, 14(2), 115. https://doi.org/10.1007/s12517-021-06508-6
Halwani, J., & Halwani, B. (2022). Climate Change in Lebanon and the Impact to Water Resources. In W. Leal Filho & E. Manolas (Eds.), Climate Change in the Mediterranean and Middle Eastern Region (pp. 395–412). Springer, Cham. https://doi.org/10.1007/978-3-030-78566-6_19
Hargreaves, G., & Samani, Z. (1982). Estimating potential evapotranspiration. Journal of the Irrigation and Drainage Division, 108(3), 225–230.
Hong, J., Javan, K., & Shin, Y. (2021). Future Projections and Uncertainty Assessment of Precipitation Extremes in Iran from the CMIP6 Ensemble. Atmosphere, 12(8), 1052. 1–16. https://doi.org/10.3390/atmos12081052
IPCC. (2001). Climate Change 2001, The Scientific Basis. In Ipcc.
IPCC. (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment.Cambridge University Press: Cambridge.
Jahn, M. (2015). Economics of extreme weather events: Terminology and regional impact models. Weather and Climate Extremes, 10, 29–39. https://doi.org/10.1016/j.wace.2015.08.005
Karimi, V., Karami, E., & Keshavarz, M. (2018). Climate change and agriculture: Impacts and adaptive responses in Iran. Journal of Integrative Agriculture, 17(1), 1–15. https://doi.org/10.1016/S2095-3119(17)61794-5
Kendall, M. G. (1975). Rank Correlation Methods. 4th Edition, Charles Griffin, London, UK.
Kogo, B. K., Kumar, L., & Koech, R. (2021). Climate change and variability in Kenya: a review of impacts on agriculture and food security. Environment, Development and Sustainability, 23(1), 23–43. https://doi.org/10.1007/s10668-020-00589-1
Konapala, G., Mishra, A. K., Wada, Y., & Mann, M. E. (2020). Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nature Communications, 11(1), 1–10. https://doi.org/10.1038/s41467-020-16757-w
Kousari, M. R., Ekhtesasi, M. R., Tazeh, M., Naeini, M. A. S., & Zarch, M. A. A. (2011). An investigation of the Iranian climatic changes by considering the precipitation, temperature, and relative humidity parameters. Theoretical and Applied Climatology, 103(3–4), 321–335. https://doi.org/10.1007/s00704-010-0304-9
Kundzewicz, Z. W., & Gerten, D. (2015). Grand Challenges Related to the Assessment of Climate Change Impacts on Freshwater Resources. Journal of Hydrologic Engineering, 20(1), 1012. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001012
Li, C., & Fang, H. (2021). Assessment of climate change impacts on the streamflow for the Mun River in the Mekong Basin, Southeast Asia: Using SWAT model. CATENA, 201, 105199. https://doi.org/10.1016/j.catena.2021.105199
Mann, H. B. (1945). Nonparametric Tests Against Trend. Econometrica, 13(3), 245–259. https://www.jstor.org/stable/1907187
Mengistu, D., Bewket, W., Dosio, A., & Panitz, H.-J. (2021). Climate change impacts on water resources in the Upper Blue Nile (Abay) River Basin, Ethiopia. Journal of Hydrology, 592, 125614. https://doi.org/10.1016/j.jhydrol.2020.125614
Mianabadi, A., Davary, K., Kolahi, M., & Fisher, J. (2022). Water/climate nexus environmental rural-urban migration and coping strategies. Journal of Environmental Planning and Management, 65(5), 852-876. https://doi.org/10.1080/09640568.2021.1915259
Mianabadi, A., Davary, K., Mianabadi, H., Kolahi, M., & Mostert, E. (2023). Toward the development of a conceptual framework for the complex interaction between environmental changes and rural-urban migration. Frontiers in Water, 5, 1–13. https://doi.org/10.3389/frwa.2023.1142307
Mianabadi, A., Derakhshan, H., Davary, K., Hasheminia, S. M., & Hrachowitz, M. (2020). A Novel Idea for Groundwater Resource Management during Megadrought Events. Water Resources Management, 34(5), 1743–1755. https://doi.org/10.1007/s11269-020-02525-4
Mianabadi, A., Hasheminia, S. M., Davary, K., Derakhshan, H., & Hrachowitz, M. (2021). Estimating the Aquifer’s Renewable Water to Mitigate the Challenges of Upcoming Megadrought Events. Water Resources Management, 35(14), 4927–4942. https://doi.org/10.1007/s11269-021-02980-7
Mianabadi, A., Shirazi, P., Ghahraman, B., Coenders-Gerrits, A. M. J., Alizadeh, A., & Davary, K. (2019). Assessment of short- and long-term memory in trends of major climatic variables over Iran: 1966–2015. Theoretical and Applied Climatology, 135(1–2), 677–691. https://doi.org/10.1007/s00704-018-2410-z
Mukhopadhyay, R., Sarkar, B., Jat, H. S., Sharma, P. C., & Bolan, N. S. (2021). Soil salinity under climate change: Challenges for sustainable agriculture and food security. Journal of Environmental Management, 280, 111736. https://doi.org/10.1016/j.jenvman.2020.111736
Naderi, M., & Raeisi, E. (2016). Climate change in a region with altitude differences and with precipitation from various sources, South-Central Iran. Theoretical and Applied Climatology, 124(3–4), 529–540. https://doi.org/10.1007/s00704-015-1433-y
Nassiri, M., Koocheki, A., Kamali, G. A., & Shahandeh, H. (2006). Potential impact of climate change on rainfed wheat production in Iran. Archives of Agronomy and Soil Science, 52(1), 113–124. https://doi.org/10.1080/03650340600560053
Newton, B. W., Farjad, B., & Orwin, J. F. (2021). Spatial and Temporal Shifts in Historic and Future Temperature and Precipitation Patterns Related to Snow Accumulation and Melt REgimes in Alberta,Canada. Environmental Reaserch Letter, 13, 1013. https://doi.org/10.3390/w13081013
Ongoma, V., Chena, H., & Gaoa, C. (2018). Projected changes in mean rainfall and temperature over east Africa based on CMIP5 models. International Journal of Climatology, 38(3), 1375–1392. https://doi.org/10.1002/joc.5252
Ostad-Ali-Askar, K., Su, R., & Liu, L. (2018). Water resources and climate change. Journal of Water and Climate Change, 9(2), 239–239. https://doi.org/10.2166/wcc.2018.999
Prakash, S. (2021). Impact of climate change on aquatic ecosystem and its biodiversity: an overview. International Journal Biological Innovations, 3(2), 312-317. https://doi.org/10.46505/IJBI.2021.3210
Raziei, T., Mofidi, A., Santos, J. A., & Bordi, I. (2012). Spatial patterns and regimes of daily precipitation in Iran in relation to large-scale atmospheric circulation. International Journal of Climatology, 32(8), 1226–1237. https://doi.org/10.1002/joc.2347
Saeed, F. H., Al-Khafaji, M. S., & Al-Faraj, F. A. M. (2021). Sensitivity of Irrigation Water Requirement to Climate Change in Arid and Semi-Arid Regions towards Sustainable Management of Water Resources. Sustainability, 13(24), 13608. https://doi.org/10.3390/su132413608
Schilling, J., Hertig, E., Tramblay, Y., & Scheffran, J. (2020). Climate change vulnerability, water resources and social implications in North Africa. Regional Environmental Change, 20, 15. https://doi.org/10.1007/s10113-020-01597-7
Seddon, A. W. R., Macias-Fauria, M., Long, P. R., Benz, D., & Willis, K. J. (2016). Sensitivity of global terrestrial ecosystems to climate variability. Nature, 531(7593), 229–232. https://doi.org/10.1038/nature16986
Sen, P. K. (1968). Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical Association, 63, 13799–1389. https://doi.org/10.2307/2285891
Usman, M., Ndehedehe, C. E., Farah, H., & Manzanas, R. (2021). Impacts of climate change on the streamflow of a large river basin in the Australian tropics using optimally selected climate model outputs. Journal of Cleaner Production, 315, 128091. https://doi.org/10.1016/j.jclepro.2021.128091
Verma, A. K. (2021). Influence of climate change on balanced ecosystem, biodiversity and sustainable development: an overview. International Journal of Biological Innovations, 3(2), 331–337. https://doi.org/10.46505/IJBI.2021.3213
Wang, Y.-J., & Qin, D.-H. (2017). Influence of climate change and human activity on water resources in arid region of Northwest China: An overview. Advances in Climate Change Research, 8(4), 268–278. https://doi.org/10.1016/j.accre.2017.08.004
Yazdani, M. hasan, Amininia, K., Safarianzengir, V., Soltani, N., & Parhizkar, H. (2021). Analyzing climate change and its effects on drought and water scarcity (case study: Ardabil, Northwestern Province of Iran, Iran). Sustainable Water Resources Management, 7(2), 16. https://doi.org/10.1007/s40899-021-00494-z
Ye, Y., & Qian, C. (2021). Conditional attribution of climate change and atmospheric circulation contributing to the record- breaking precipitation and temperature event of summer 2020 in southern China. Environmental Research Letters, 16, 044058. doi: 10.1088/1748-9326/abeeaf
Yu, Y., Pi, Y., Yu, X., Ta, Z., Sun, L., Disse, M., Zeng, F., Li, Y., Chen, X., & Yu, R. (2019). Climate change, water resources and sustainable development in the arid and semi-arid lands of Central Asia in the past 30 years. Journal of Arid Land, 11(1), 1–14. https://doi.org/10.1007/s40333-018-0073-3
Zarrin, A., & Dadashi-Roudbari, A. (2021). Projection of future extreme precipitation in Iran based on CMIP6 multi-model ensemble. Theoretical and Applied Climatology, 144(1–2), 643–660. https://doi.org/10.1007/s00704-021-03568-2
Zarrin, A., Dadashi-Roudbari, A., & Hassani, S. (2022). Future Changes in Precipitation Extremes Over Iran: Insight from a CMIP6 Bias-Corrected Multi-Model Ensemble. Pure and Applied Geophysics, 179, 441–464. https://doi.org/10.1007/s00024-021-02904-x
Zhan, W., He, X., Sheffield, J., & Wood, E. F. (2020). Projected Seasonal Changes in Large-Scale Global Precipitation and Temperature Extremes Based on the CMIP5 Ensemble. Journal of Climate, 33(13), 5651–5671. https://doi.org/10.1175/jcli-d-19-0311.1
Zou, S., Abuduwaili, J., Duan, W., & Ding, J. (2021). Attribution of changes in the trend and temporal non ‑ uniformity of extreme precipitation events in Central Asia. Scientific Reports, 0123456789, 1–11. https://doi.org/10.1038/s41598-021-94486-w
CAPTCHA Image