Abiodun O. I., Jantan A., Omolara A. E., Dada K. V., Mohamed N. A and Arshad H. 2018. State-of-the-art in artificial neural network applications: A survey. Heliyon, 4(11): e00938.
Bakker H., van Duistc K., van Schagen K., Vreeburg J. and Rietved L. 2014. Improving the performance of water demand forecasting models by using weather input, Procedia Engineering, 70: 93-103.
Candelieri A. 2017. Clustering and Support Vector Regression for Water Demand Forecasting and Anomaly Detection. Water, (3): 224-243.
Chen S., Guohua F., Xianfeng H. and Yuhong Zh. 2018. Water Quality Prediction Model of a Water Diversion Project Based on the Improved Artificial Bee Colony–Back propagation Neural Network, Water, 10(6): 806.
Ghalehkhondabi I., Ardjmand E. and Young W.A. 2017. Water demand forecasting: review of soft computing methods. Environmental Monitoring and Assessment Journal, 189(7): 313-330.
Graf R., Zhu S. and Sivakumar B. 2019. Forecasting river water temperature time series using a wavelet–neural network hybrid modelling approach. Journal of Hydrology, 578: 124115.
Goldberg David E. 1989. Genetic algorithms in search, optimization and machine learning, 1st ed. Addison-Wesley Longman Publishing Co., Inc, Boston.
Guo L., Fu P., Shi T., Chen Y., Zeng C., Zhang H. and Wang S. 2021. Exploring influence factors in mapping soil organic carbon on low-relief agricultural lands using time series of remote sensing data. Soil and Tillage Research, 210: 104982.
Hutton C., Hofman J. and Kapelan Z. 2020. Water demand forecasting accuracy and influencing factors at different spatial scales using a Gradient Boosting Machine. Water Resources Research. 56(8): 1-13.
Kozłowski E., Kowalska B. and Kowalski D. 2018. Water demand forecasting by trend and harmonic analysis. Archivs Civil and Mechnical.Engineering, 18: 140–148.
Meireles I., Sousa V., Bleys B. and Poncelet B. 2022. Domestic hot water consumption pattern: Relation with total water consumption and air temperature. Renewable and Sustainable Energy Reviews, 157: 112035.
Nazemi A. and Wheater H. S. 2015. On inclusion of water resource management in Earth system models–Part 1: Problem definition and representation of water demand. Hydrology and Earth System Sciences, 19(1): 33-61.
Smolak K., Kasieczka B., Fialkiewicz W., Rohm W., Siła-Nowicka K. and Kopańczyk K. 2020. Applying human mobility and water consumption data for short-term water demand forecasting using classical and machine learning models. Urban Water Journal, 17(1): 32-42.
Tavanpour N., Noshadi M. and Tavanpour N. 2016. Scale formation and corrosion of drinking water pipes: a case study of drinking water distribution system of Shiraz city. Modern Applied Science, 10(3): 166-177.
Wang Y., Jian L., Rong L, Xinyu S. and Enhui L.(2020. Precipitation forecast of the Wujiang River B based on artificial bee colony algorithm and backpropagation neural network, Alexandria Engineering Journal, 59: 1473–1483.
Waqas Khan P., Byun Y. C., Lee S. J. and Park N. 2020. Machine learning based hybrid system for imputation and efficient energy demand forecasting. Energies, 13(11): 2681.
Zubaidi S. L., Al-Bugharbee H., Ortega-Martorell S., Gharghan S. K., Olier I., Hashim K. S and Kot P. 2020. A novel methodology for prediction urban water demand by wavelet denoising and adaptive neuro-fuzzy inference system approach. Water, 12(6): 1628.
Zubaidi S. L., Ortega-Martorell S., Kot P., Alkhaddar R. M., Abdellatif M., Gharghan S. K and Hashim K. 2021. A method for predicting long-term municipal water demands under climate change. Water Resources Management, 34(3): 1265-1279.
Send comment about this article