A Comprehensive Overview of Single-Source and Dual-Source Energy Balance Algorithms ‎for Estimating Actual Evapotranspiration

Document Type : Review Article

Author

Researcher, Department of Soil Conservation and Watershed Management Research, Kerman Agricultural and Natural Resource Research Center, Agricultural Research, Education and Extension Organization, Kerman, Iran.

10.22067/jwsd.v11i4.2407-1345

Abstract

Evapotranspiration estimation is one of the most important water balance components and involves various complexities. In general, energy balance models are divided into two categories: single-source and two-source models. Choosing a model to estimate ET from among the existing energy balance models is challenging because each model has strengths and limitations. The goal of the present research is to introduce and compare several evapotranspiration estimation methods, including Surface Energy Balance Algorithm for Land (SEBAL) model, Mapping EvapoTranspiration at high Resolution with Internalized Calibration (METRIC) model, Surface Energy Balance System (SEBS) model, Simpled Surface Energy Balance Index (S-SEBI) model, Operational Simplified Surface Energy Balance (SSEBop) model— Two- Source (soil + canopy) (TSM) model and Two-Source Time Integrated (TSTIM) model. Some advantages of the single-source energy balance model S_SEBI include the following: It is possible to implement it using only images without the need for weather data. Therefore, if the number of meteorological stations in the area is low, this method can be utilized. No need for a land use map. One disadvantage of this model is that it can only be used in cases where atmospheric conditions across the entire image are constant. Due to the simplicity and lower complexity of the structure and assumptions of the SSEBop model, it has increased operational capability for calculating actual evapotranspiration over large areas. However, it is not recommended for regions with heterogeneous vegetation cover, mountainous areas, high albedo regions, or high levels of radiation, and in such areas, the TSEB algorithm is recommended. Due to some errors and uncertainties in these surface energy balance models, extensive studies are required to overcome these limitations.

Keywords

Main Subjects


حسن‌پور، بهاره، میرزایی، فرهاد، ارشد، صالح، و کوثری، هانیه. (1391). مقایسه الگوریتم‌های SEBAL و S-SEBI در برآورد تبخیر و تعرق در منطقه کرج. آب و خاک، 26(6)، 1360-1371. doi: 10.22067/jsw.v0i0.19247
خرسند موقر، مصطفی، و سیما، سمیه. (1398). مقایسه مدل‌های بیلان انرژی مبتنی بر داده‌های سنجش از دور در برآورد تبخیر از سطح دریاچه‌های شور. مهندسی فناوری اطلاعات مکانی، ۷(۲)، ۱۵۵-۱۷۵. doi: 10.29252/jgit.7.2.155
رئیسی، احمد، مظفری، غلامرضا، و غفاریان مالمیری، حمیدرضا. (1402). ارزیابی و مقایسه میزان برآورد تبخیر و تعرق گیاه گندم با استفاده از الگوریتم سبال و روش پنمن – مانتیث در منطقه چاه نیمه‌های سیستان و بلوچستان. جغرافیای طبیعی، 16(60)، 17-37. dor: 20.1001.1.20085656.1402.16.60.1.0
نظری، رستا، و کاویانی، عباس. (1395). بررسی نتایج تخمین تبخیر و تعرق گیاه مرجع چمن با استفاده از مدل‌‌های متریک و سبال در دشت قزوین. پژوهش آب در کشاورزی، 30(2)، 187-199. doi: 10.22092/jwra.2016.106643
Abatzoglou, J. T. (2013). Development of gridded surface meteorological data for ecological applications and modelling. International Journal of Climatology, 33(1), 121-131. doi: 10.1002/joc.3413
Acharya, B., Sharma, V., Heitholt, J., Tekiela, D., & Nippgen, F. (2020).Quantification and Mapping of Satellite Driven Surface Energy Balance Fluxes in Semi-Arid to Arid Inter-Mountain Region. Remote Sensing, 12(2), 4019. doi: 10.3390/rs12244019
Acharya, B., & Sharma, V. (2021). Comparison of satellite driven surface energy balance models in estimating crop evapotranspiration in semi-arid to arid inter-mountain region. Remote Sensing, 13(9), 1822. doi: 10.3390/rs13091822
Allen, R. G., Pereira, L.S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, D05109.
Allen, R. G., Morse A., & Tasumi M. (2002). Application of SEBAL for western US water rights regulation and planning. Proceedings of the International Conference on Irrigation and Drainage, Workshop on Remote Sensing of ET for Large Regions; Montpellier, France.
Allen, R. G., Walter, I. A., Elliott, R. L., Howell, T. A., Itenfisu, D., Jensen, M. E., & Snyder, R. L. (2005). The ASCE standard reference evapotranspiration equation: American Society of Civil Engineers. Reston,Va. doi: 10.1061/9780784408056
Allen, R. G., Tasumi, M., & Trezza, R. (2007). Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. Journal of irrigation and drainage engineering, 133(4),380-394. doi: 10.1061/(ASCE)0733-9437(2007)133:4(380)
Anderson, M. C., Norman, J. M., Diak, G. R., Kustas, W. P., & Mecikalski, J. R. (1997). A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing. Remote sensing of environment, 60(2), 195-216. doi: 10.1016/S00344257(96)00215-5
Aryalekshmi, B. N., Biradar, R. C., Chandrasekar, K., & Ahamed, J. M. (2021). Analysis of various surface energy balance models for evapotranspiration estimation using satellite data. The Egyptian Journal of Remote Sensing and Space Science, 24(3), 1119-1126. doi: 10.1016/j.ejrs.2021.11.007
Awada, H., Di Prima, S., Sirca, C., Giadrossich, F., Marras, S., Spano, D., & Pirastru, M. (2021). Daily Actual Evapotranspiration Estimation in a Mediterranean Ecosystem from Landsat Observations Using SEBAL Approach. Forests, 12(2), 189. doi: 10.3390/f12020189
Bastiaanssen, W. G., Menenti, M., Feddes, R. A., & Holtslag, A. A. M. (1998). A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. Journal of hydrology, 212, 198-212. doi: 10.1016/S00221694(98)00253-4
Bastiaanssen, W. G. M., Noordman, E. J. M., Pelgrum, H., Davids, G., Thoreson, B. P., & Allen, R. G. (2005). SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. Journal of irrigation and drainage engineering, 131(1), 85-93. doi: 10.1016/j.agrformet.2023.109408
Backx, J., Hilberath, C., Messenbock, R., Morieux, Y., & Streubel, H. (2017). Mastering complexity through simplification: Four steps to creating competitive advantage. Boston Consulting Group.
Byun, K., Liaqat, U.W., & Choi, M. (2014). Dual-model approaches for evapotranspiration analyses over homo- and heterogeneous land surface conditions. Agricultural and forest meteorology, 197, 169–187. doi: 10.1016/j.agrformet.2014.07.001
Dias Lopes, J., Neiva Rodrigues, L., Acioli Imbuzeiro, H. M., & Falco Pruski, F. (2019). Performance of SSEBop model for estimating wheat actual evapotranspiration in the Brazilian Savannah region. International Journal of Remote Sensing, 40(18), 6930-6947. doi: 10.1080/01431161.2019.1597304
Earls, J., & Dixon, B. (2008). A comparison of SWAT model-predicted potential evapotranspiration using real and modeled meteorological data. Vadose Zone Journal, 7(2), 570-580. doi: 10.2136/vzj2007.0012
Gocic, M., Petković, D., Shamshirband, S. & Kamsin, A. (2016). Comparative analysis of reference evapotranspiration equations modelling by extreme learning machine. Computers and Electronics in Agriculture, 127, 56-63. doi: 10.1016/j.compag.2016.05.017
Häusler, M., Conceição, N., Tezza, L., Sánchez, J. M., Campagnolo, M. L., Häusler, A. J., ... & Ferreira, M. I. (2018). Estimation and partitioning of actual daily evapotranspiration at an intensive olive grove using the STSEB model based on remote sensing. Agricultural Water Management, 201, 188-198. doi: 10.1016/j.agwat.2018.01.027
Kilic, A., Allen, R., Trezza, R., Ratcliffe, I., Kamble, B., Robison, C., & Ozturk, D. (2016). Sensitivity of evapotranspiration retrievals from the METRIC processing algorithm to improved radiometric resolution of Landsat 8 thermal data and to calibration bias in Landsat 7 and 8 surface temperature. Remote Sensing of Environment, 185, 198-209. doi: 10.1016/j.rse.2016.07.011
Li, F., & Lyons, T. J. (2002). Remote estimation of regional evapotranspiration. Environmental Modelling & Software, 17(1), 61-75. doi: 10.1016/S13648152(01)00053-6
Liaqat, U. W., & Choi, M. (2015). Surface energy fluxes in the Northeast Asia ecosystem: SEBS and METRIC models using Landsat satellite images. Agricultural and Forest Meteorology, 214, 60-79. doi: 10.1016/j.agrformet.2015.08.245
Long, D., Singh, V.P., & Li, Z.L. (2011). How sensitive is SEBAL to changes in input variables, domain size and satellite sensor? Journal of Geophysical Research: Atmospheres, 116, D21107. doi: 10.1029/2011JD016542
Mahmoud, S. H., & Alazba, A. A. (2016). A coupled remote sensing and the Surface Energy Balance based algorithms to estimate actual evapotranspiration over the western and southern regions of Saudi Arabia. Journal of Asian Earth Sciences, 124, 269–283. doi: 10.1016/j.jseaes.2016.05.012
Mallick, K., Jarvis, A. J., Boegh, E., Fisher, J. B., Drewry, D. T., Tu, K. P., ... & Niyogi, D. (2014). A Surface Temperature Initiated Closure (STIC) for surface energy balance fluxes. Remote Sensing of Environment, 141, 243-261. doi: 10.1016/j.rse.2013.10.022 
Norman, J. M., Kustas, W. P., & Humes, K. S. (1995). Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agricultural and Forest Meteorology, 77(3-4), 263-293. doi: 10.1016/01681923(95)02265-Y
Petković, B., Petković, D., Kuzman, B., Milovančević, M., Wakil, K., Ho, L. S., & Jermsittiparsert, K. (2020). Neuro-fuzzy estimation of reference crop evapotranspiration by neuro fuzzy logic based on weather conditions. Computers and electronics in Agriculture, 173, 105358. doi: 10.1016/j.compag.2020.105358
Raissi-Dehkordi, I. Sima, S., & Karimi, N. (2023). Estimation of actual evapotranspiration by neuro fuzzy logic based on weather conditions. Computers and electronics in Agriculture, 173, 105358. doi: 10.1016/j.compag.2020.105358
Roerink, G. J., Su, Z., & Menenti, M. (2000). S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25(2), 147-157. doi: 10.1016/S1464-1909(99)00128-8
Senay, G. B., Bohms, S., Singh, R. K., Gowda, P. H., Velpuri, N. M., Alemu, H., & Verdin, J. P. (2013). Operational evapotranspiration mapping using remote sensing and weather datasets: A new parameterization for the SSEB approach. Journal of the American Water Resources Association (JAWRA), 49(3), 577-591. doi: 10.1111/jawr.12057
Senay, G. B., Schauer, M., Friedrichs, M., Velpuri, N. M., & Singh, R. K. (2017). Satellite-based water use dynamics using historical Landsat data (1984–2014) in the southwestern United States. Remote Sensing of Environment, 202, 98-112. doi: 10.1016/j.rse.2017.05.005
Singh, R.K., & Senay, G.B. (2016). Comparison of Four Different Energy Balance Models for Estimating Evapotranspiration in the Midwestern United States. Water, 8 (1), 9. doi: 10.3390/w8010009
Shi, T. T., Guan, D. X., Wu, J. B., Wang, A. Z., Jin, C. J., & Han, S. J. (2008). Comparison of methods for estimating evapotranspiration rate of dry forest canopy: Eddy covariance, Bowen ratio energy balance, and Penman‐Monteith equation. Journal of Geophysical Research: Atmospheres, 113(D19). doi: 10.1029/2008JD010174
Sobrino, J. A., Souza da Rocha, N., Skoković, D., Suélen Käfer, P., López-Urrea, R., Jiménez-Muñoz, J. C., & Alves Rolim, S. B. (2021). Evapotranspiration Estimation with the S-SEBI Method from Landsat 8 Data against Lysimeter Measurements at the Barrax Site, Spain. Remote Sensing, 13(18), 3686. doi: 10.3390/rs13183686
Su, Z. (2002). The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrology and earth system sciences, 6(1), 85-100. doi: 10.5194/hess-6-85-2002
Tasumi, M. (2003). Progress in operational estimation of regional evapotranspiration using satellite imagery. ProQuest Dissertations And Theses; Thesis (Ph.D.), University of Idaho. Publication Number: AAI3080262; ISBN: 9780496281398.
Thornton, P. E., Shrestha, R., Thornton, M., Kao, S. C., Wei, Y., & Wilson, B. E. (2021). Gridded daily weather data for North America with comprehensive uncertainty quantification. Scientific Data, 8(1), 190. doi: 10.1038/s41597-021-00973-0
Wagle, P., Bhattarai, N., Gowda, P. H., & Kakani, V. G. (2017). Performance of five surface energy balance models for estimating daily evapotranspiration in high biomass sorghum. Journal of Photogrammetry and Remote Sensing (ISPRS), 128, 192-203. doi: 10.1016/j.isprsjprs.2017.03.022
Zhang, B., Chen, H., Xu, D., & Li, F. (2017). Methods to estimate daily evapotranspiration from hourly evapotranspiration. Biosystems Engineering, 153, 129-139. doi: 10.1016/j.biosystemseng.2016.11.008
CAPTCHA Image