Interaction of Alluvial and Karstic Aquifers in North of Allah Akbar Highlands Daragaz Using Vertical Electrical Sounding (VES) Method

Document Type : Case Study

Authors

1 Groundwater and Geothermal Research Center (GRC), Water and Environment Research Institute, Ferdowsi University of Mashhad, Mashhad, Iran. Department of Geology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran

2 Department of Geology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran

10.22067/jwsd.v11i4.2410-1366

Abstract

Investigating aquifers and determining the alluvial and karst aquifers interaction, especially in the border areas of the country, is very important. With geoelectrical methods (Vertical Electrical Sounding -VES), it is possible to determine the subsurface geological layering, aquifer layers, the depth to bedrock and the apparent resistivity (ρa) of the geological layers. In this paper, by performing 40 VES in the northern plain of Darghz Allah Akbar Heights (DAH), calculating the ρa of the layers and interpreting the geoelectrical sections, the aquifers up to the depth of 350 meters and the relationship between alluvial and Tirgan karstic aquifer (TKA) have been investigated. The results show the presence of alluvial aquifers up to 20 meters depth in the south, east and west of Chapeshlo, north and northwest of Daghdar and west of Dargaz industrial town, as well as the presence of deep karstic aquifers in the southeast of Chapeshlo, northeast of Sugandi, north of Gandab, and west of Daghdar. The changes in ρa and the depth to bedrock show that there is not much relationship between the alluvial and TKA. Considering the absence of highly discharged springs around DAH and the low thickness of the alluvial aquifer, it can be concluded that most groundwater of the TKA, except in limited places at the foot of the DAH (Cheholmir and Cherlaq areas) has little effect on feeding of alluvial aquifer of Daragaz southern plain, and due to the barrier function of the deeper fine-grained layers, the groundwater flow paths are towards the depths or Dorbadam and Shamkhal valleys.

Keywords

Main Subjects


سوگندی، رسول. (1395). شناسایی مشخصات لایه‌های زمین‌شناسی با استفاده از داده‌های ژئوالکتریک و مقایسه نتایج با داده‌های حفاری - مطالعه موردی دشت مشهد، پایان‌نامه، کارشناسی ارشد، دانشگاه صنعتی شاهرود، شاهرود.
شرکت آب منطقه‌ای خراسان رضوی. (1374). گزارش ژئوفیزیک دشت درگز منطقه نوخندان، مشهد، ایران.
عزیزی، فرزانه، و محمدزاده، حسین. (1392) تخمین پارامترهای هیدروژئولوژیکی با روش‌های ژئوالکتریک و برآورد حجم تقریبی و حجم آب قابل استحصال از آبخوان دشت امامزاده جعفر گچساران. جغرافیا و توسعه ناحیه‌ای، 21، 179-195. https://doi.org/10.22067/geography.v11i21.36344
ولایتی، سعدالله. (1362). گزارش مقدماتی منابع آب دشت درگز (حوضه آبریز رودخانه درونگر). امور مطالعات منابع آب، شرکت سهامی آب منطقه‌ای خراسان، وزارت نیرو.
Barnie, S., Geophrey, K., Anornu, G.K., & Kortatsi, B.K. (2014). Determination of Shallow Groundwater Aquifer Geometry using Geo-Electrical Techniques in the Atankwidi Sub-Basin of the White Volta Basin,Ghana. Journal of Environment and Earth Science, 4(14), 20-31. https://www.iiste.org/Journals/index.php/JEES/article/view/14499
Corvallis, O.R. (2000). D.C. Resistivity methods, Northwest GeophysicalAssociates, Inc.
Ishola, S.A., & Olufemi, S.T. (2024). Groundwater Exploration using Geoelectric Technique in Oru-Ijebu, South-West Nigeria. Nigerian Journal of Theoretical and Environmental Physics, 2(1), 49-66.  https://doi.org/10.62292/njptep.v2i1.2024.20 
Idowu, I. O., & Ojo, A. O. (2024). Exploring groundwater resources in southwestern Nigeria: An integrated geophysical approach. HydroResearch, 7, 213-224. https://doi.org/10.1016/j.hydres.2024.04.002
Jerbi, H., Sebai, A.,  Hamlaoui, I., Hamdi, M., & Hmida, N. (2022). Assessment of aquifer geometry and groundwater storage using three-dimensional hydrostratigraphic modeling and geophysical survey: The case study of Nefza massive dunes (Northern Tunisia). Research Square. https://doi.org/10.21203/rs.3.rs-1416479/v1
Molano, C.E., Salamanca, M., & Van Overmeeren, R.A. (1990). Numberical Modelling of Standard and Comtinuous Vertical Electrical Soundings. Geophysical Prospecting, 38(7), 705-718. https://doi.org/10.1111/j.1365-2478.1990.tb01870.x
Muiuane, E.A., & Pederson, L.B. (1999). Automatic 1D interpretation of DC resistivity sounding data. Journal of Applied Geophysics, 42(1), 35-45. https://doi.org/10.1016/S0926-9851(99)00015-4
Kirsch, R. (2006). Groundwater Geophysics: A Tool for Hydrogeology. Springer,Verlag Berlin Heidelberg, Germany. https://link.springer.com/book/10.1007/3-540-29387-6
Seaton, W.J., & Burbey, T.J. (2002). Evaluation of two-dimensional resistivity methods in a fractured crystalline-rock terrane. Journal of Applied Geophysics, 51(1), 21-41. https://doi.org/10.1016/S0926-9851(02)00212-4
U.S. Geological Survey. (2006). FGDC Digital Cartographic Standard for Geologic Map Symbolization, Technical Report FGDC-STD-013-2006, Federal Geographic Data Committee, USGS.
Vereecken, H., Binley, A., Cassiani, G., Revil, A., & Titov, K. (2006). Applied Hydrogeophysics. NATO Science Series,  (volume 71). Springer, Dordrecht, Netherlands. https://doi.org/10.1007/978-1-4020-4912-5_1 
Williams, J.H., & Paillet, F.L. (2023). Geophysical Logging for Hydrogeology. The Grounwater Project, Guelph, Ontario, Canada. https://doi.org/10.21083/UQGA6966
CAPTCHA Image