Effectiveness of Different Adsorbents in Removing Heavy Metals from Municipal Wastewater: A Review Study

Document Type : Review Article

Authors

1 Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran

2 Environmental Expert, Faculty of Natural Resources, Birjand University, Birjand, Iran.

10.22067/jwsd.v11i4.2407-1346

Abstract

Today, the removal of heavy metals from industrial and urban wastewater is considered as one of the serious issues and challenges facing humanity. The present study was carried out with the aim of investigating the efficiency of different adsorbents in removing heavy metals from municipal wastewater. In this study, various adsorbents such as natural adsorbents such as forest adsorbents, and wood waste, agricultural waste, fruit and vegetable peels, coal, and biochar were discussed. In addition, the role and application of nanoabsorbents, nanocomposites and carbon nanotubes in urban wastewater treatment were studied. The literature review showed that bioabsorbents are more beneficial for removing heavy metals from urban wastewater due to being economical and environmentally friendly. Natural materials that are usually used as adsorbents have different capacities to remove heavy metals from wastewater. Among the natural adsorbents, the use of agricultural residues, biochars and coal-based adsorbents has received more attention. However, most of the research has been done on a laboratory scale. According to the obtained information, nanoabsorbents can also remove toxic metals from municipal wastewater. Studies showed that the most widely used nanomaterials as adsorbents for removing heavy metals include graphene, iron oxide, magnesium oxide, activated carbon, manganese oxide, zinc oxide, titanium oxide, and carbon nanotubes. Despite the key role of nanomaterials in the removal of heavy metals, considering that these materials are still not cheap compared to traditional materials (such as activated carbon), the use of bioadsorbents can be effective in urban wastewater treatment.

Keywords

Main Subjects


رادخواه، علیرضا، ایگدری، سهیل، و صادقی‏‌نژاد ماسوله، اسماعیل. (1400الف). تجمع فلزات سنگین در ماهیان: تهدیدی جدی برای امنیت غذایی و سلامت جامعه. مجله طب دریا، 3(۴)، 236-245. doi: 10.30491/3.4.236
رادخواه، علیرضا، ایگدری، سهیل، و صادقی‌‏نژاد ماسوله، اسماعیل. (1400 ب). مروری بر فیلتراسیون غشایی و بررسی کارایی آن در بهبود کیفیت آب در سیستم‏‌های آبزی‏‌پروری مداربسته (RAS). آب و توسعه پایدار، 8(3)، 81-88 doi: 10.22067/jwsd.v8i3.2105.1050
رادخواه، علیرضا، و صادقی‌‏نژاد ماسوله، اسماعیل. (1400). بررسی تأثیر عوامل فیزیکوشیمیایی آب بر زیست‏‌فراهمی، میزان سمیت و سطح اثرگذاری نانو ذرات فلزی در اکوسیستم‏‌های آبزی. آب و توسعه پایدار، 8(2)، 71-90. doi: 10.22067/jwsd.v8i2.1019
رادخواه، علیرضا، و ایگدری، سهیل. (1402). کاربرد نانوذرات نقره (Ag-NPs) در میکروب‌زدایی آب در سیستم‌های پرورش آبزیان و اثرات ناشی از رهایش آن در محیط. آب و توسعه پایدار، 10(2)، 109-126. doi: 10.22067/jwsd.v10i2.2301-1209
Abdollahi, S., Raissi, H., & Zaboli, A. (2023). Adsorption Efficiency of Carbon Materials for the Removal of Organic Pollutants: DDT from Aqueous Solution. Journal of Physical Chemistry B, 127(49), 10518-10528. doi: 10.1021/acs.jpcb.3c04825
Aftab, K., Akhtar, K., Kausar, A., Khaliq, S., Nisar, N., Umbreen, H., & Iqbal, M. (2017). Fungal strains isolation, identification and application for the recovery of Zn(II) ions. Journal of Photochemistry and Photobiology B: Biology, 175, 282-290. doi: 10.1016/j.jphotobiol.2017.08.028
Agasti, N., Gautam, V., Manju, P., Pandey, N., Genwa, M., Meena, P.L., Tandon, S., & Samantaray, R. (2022). Carbon nanotube based magnetic composites for decontamination of organic chemical pollutants in water: A review. Applied Surface Science Advances, 10, 100270. doi: 10.1016/j.apsadv.2022.100270
Aghababaei, A., Ncibi, M.C., & Sillanpää, M. (2017). Optimized removal of oxytetracycline and cadmium from contaminated waters using chemically-activated and pyrolyzed biochars from forest and wood-processing residues. Bioresource Technology, 239, 28-36. doi: 10.1016/j.biortech.2017.04.119
Ahmadi, A., Foroutan, R., Esmaeili, H., & Tamjidi, S. (2020). The role of bentonite clay and bentonite clay@MnFe2O4 composite and their physico-chemical properties on the removal of Cr(III) and Cr(VI) from aqueous media. Environmental Science and Pollution Research, 27(4), 1-14. doi: 10.1007/s11356-020-07756-x
Ahmed, M.B., Zhou, J.L., Ngo, H.H., & Guo, W. (2015). Adsorptive removal of antibiotics from water and wastewater: Progress and challenges. Science of The Total Environment, 532, 112–126. doi: 10.1016/j.scitotenv.2015.05.130
Ahmaruzzaman, M. (2011). Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Advances in Colloid and Interface Science, 166(1–2), 36-59. doi: 10.1016/j.cis.2011.04.005
Alam, M.M., Hossain, M.A., Hossain, M.D., Johir, M.A.H., Hossen, J., Rahman, M.S., Zhou, J.L, Hasan, ATMK., Karmakar, A.K., & Ahmed, M.B. (2020). The Potentiality of Rice Husk-Derived Activated Carbon: From Synthesis to Application. Processes, 8(2), 203. doi: 10.3390/pr8020203
Alazaiza, M.Y.D., Albahnasawi, A., Ali, G.A.M., Bashir, M.J.K., Copty, N.K., Amr, S.S.A., Abushammala, M.F.M., & Al Maskari, T. (2021). Recent Advances of Nanoremediation Technologies for Soil and Groundwater Remediation: A Review. Water, 13(16), 2186. doi: 10.3390/w13162186
Al-Enezi, G., Hamoda, M.F., & Fawzi, N. (2004). Ion exchange extraction of heavy metals from wastewater sludges. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 39(2), 455-464. doi: 10.1081/ese-120027536
Altammar, K.A. (2023). A review on nanoparticles: characteristics, synthesis, applications, and challenges. Front Microbiol., 14, 1155622. doi: 10.3389/fmicb.2023.1155622
Anjum, M., Miandad, R., Waqas, M., Gehany, F., & Barakat, M.A. (2016). Remediation of wastewater using various nano-materials. Arabian Journal of Chemistry, 22, 1-15. doi: 10.1016/j.arabjc.2016.10.004
Anwar, J., Shafique, U., Salman, M., Zaman, W., Anwar, S., & Anzano, J.M. (2009). Removal of chromium (III) by using coal as adsorbent. Journal of Hazardous Materials, 171(1-3), 797-801. doi: 10.1016/j.jhazmat.2009.06.076
Ardakani, M.N., & Gholikandi, G.B. (2020). Microbial fuel cells (MFCs) in integration with anaerobic treatment processes (AnTPs) and membrane bioreactors (MBRs) for simultaneous efficient wastewater/sludge treatment and energy recovery -A state-of-the-art review. Biomass and Bioenergy, 141, 5-23. 
Aziz, M., & Kasongo, G. (2021). The Removal of Selected Inorganics from Municipal Membrane Bioreactor Wastewater Using UF/NF/RO Membranes for Water Reuse Application: A Pilot-Scale Study. Membranes (Basel), 11(2), 117. doi: 10.3390/membranes11020117
Baskar, A.V., Bolan, N, Son, A.H, Sooriyakumar, P., Kumar M., & Kadambot, H.M. (2022). Recovery, regeneration and sustainable management of spent adsorbents from wastewater treatment streams: A review. Science of the Total Environment, 822, 153555. doi: 10.1016/j.scitotenv.2022.153555
Bassareh, H., Karamzadeh, M., & Movahedirad, S. (2023). Synthesis and characterization of cost-effective and high-efficiency biochar for the adsorption of Pb2+ from wastewater. Scientific Reports, 13, 15608. doi: 10.1038/s41598-023-42918-0
Birniwa, A.H., Habibu, S., Sa'ad Abdullahi, S., Edrees Adam Mohammad, R., & Jagaba, A.H. (2024). Membrane technologies for heavy metals removal from water and wastewater: A mini review. Case Studies in Chemical and Environmental Engineering, 9, 100538. doi: 10.1016/j.cscee.2023.100538
Blasi, A., Verardi, A., Lopresto, C.G., Siciliano, S., & Sangiorgio, P. (2023). Lignocellulosic Agricultural Waste Valorization to Obtain Valuable Products: An Overview. Recycling, 8(4), 61. doi: 10.3390/recycling8040061 
Bolan, S., Hou, D., Wang, L., Hale, L., Egamberdieva, D., Tammeorg, P., Li, R., Wang, B., Xu, J., Wang, T., Sun, H., Padhye, L.P., Wang, H., Siddique, K.H.M., Rinklebe, J., Kirkham, M.B. & Bolan, N. (2023). The potential of biochar as a microbial carrier for agricultural and environmental applications. Science of the Total Environment, 886, 163968. doi: 10.1016/j.scitotenv.2023.163968
Bożym, M., Gendek, A., Siemiątkowski, G., Aniszewska, M., & Malaťák, J. (2021). Assessment of the Composition of Forest Waste in Terms of Its Further Use. Materials (Basel), 14(4), 973. doi: 10.3390/ma14040973
Bustin, R.M., Mastalerz, M., & Wilks, K.R. (1993). Direct determination of carbon, oxygen and nitrogen content in coal using the electron microprobe. Fuel, 72(2), 181-185. doi: 10.1016/0016-2361(93)90395-I 
Chen, H., Li, J., Shao, D., Ren, X., & Wang, X. (2012). Poly (acrylic acid) grafted multiwall carbon nanotubes by plasma techniques for Co (II) removal from aqueous solution. Chemical Engineering Journal, 210, 475-481. doi: 10.1016/j.cej.2012.08.082
Cheng, J., Zhang, S., Fang, C., Ma, L., Duan, J., Fang, X., & Li, R. (2023). Removal of Heavy Metal Ions from Aqueous Solution Using Biotransformed Lignite. Molecules, 28(13), 5031. doi: 10.3390/molecules28135031
Çigdem, A., Emel, B., Bektaş, S., Genç, O., & Yürüm, Y. (2000). Cation exchange properties of low rank Turkish coals: removal of Hg, Cd and Pb from waste water. Fuel Processing Technology, 68(2), 111-120. doi: 10.1016/S0378-3820(00)00126-0
Czelej, K.C., & Kurzydlowski, K.J. (2016). CO2 stability on the Ni low-index surfaces: van der Waals corrected DFT analysis. Catal Commun, 80, 33-38. doi: 10.1016/j.catcom.2016.03.017
Da browski, A. (2001). Adsorption - from theory to practice. Adv Colloid Interface Science, 93, 135-224.
Das, T.K., & Poater, A. (2021). Review on the Use of Heavy Metal Deposits from Water Treatment Waste towards Catalytic Chemical Syntheses. International Journal of Molecular Sciences, 22(24), 13383. doi: 10.3390/ijms222413383
Dehghani, M.H., Ahmadi, S., Ghosh, S., Othmani, A., Osagie, C., Meskini, M., Sami, AlKafaas S., Malloum, A., Ahmad Khanday, W., Oluwaseun Jacob, A., Gökkuş, Ö., Oroke, A., Martins Chineme, O., Rao Karri, R., & Lima, E.C. (2023). Recent advances on sustainable adsorbents for the remediation of noxious pollutants from water and wastewater: A critical review. Arabian Journal of Chemistry, 16(12), 105303. doi: 10.1016/j.arabjc.2023.105303
Elgarahy, A.M., Elwakeel, K.Z., Mohammad, S.H., & Elshoubaky, G.A. (2021). A critical review of biosorption of dyes, heavy metals and metalloids from wastewater as an efficient and green process. Cleaner Engineering and Technology, 4, 100209. doi: 10.1016/j.clet.2021.100209
Fatima, S.S., Borhan, A., Ayoub, M., & Ghani, N.A. (2021). Development and progress of functionalized silica-based adsorbents for CO2 capture. Journal of Molecular Liquids, 338, 116913. doi: 10.1016/j.molliq.2021.116913
Feng, N., Guo, X., & Liang, S. (2009). Adsorption study of copper (II) by chemically modified orange peel. Journal of Hazard Materials, 164, 1286-1292. doi: 10.1016/j.jhazmat.2008.09.096
Freitas, J.V., Nogueira, F.G.E., & Farinas, C.S. (2019). Coconut shell activated carbon as an alternative adsorbent of inhibitors from lignocellulosic biomass pretreatment. Industrial Crops and Products, 137, 16-23. doi: 10.1016/j.indcrop.2019.05.018
Garcia, M., Knuutila, H.K., Edwin Aronu, U., & Gu, S. (2018). Influence of substitution of water by organic solvents in amine solutions on absorption of CO2. International Journal of Greenhouse Gas Control, 78, 286-305. doi: 10.1016/j.ijggc.2018.07.029
Gil, A., Santamaría, L., Korili, S.A., Vicente, M.A., Barbosa, L.V., de Souza, S.D., Marçal, L., de Faria, E.H., & Ciuffi, K.J. (2021). A review of organic-inorganic hybrid clay based adsorbents for contaminants removal: Synthesis, perspectives and applications. Journal of Environmental Chemical Engineering, 9(5), 105808. doi: 10.1016/j.jece.2021.105808
Gkika, D.A., Mitropoulos, A.C., & Kyzas, G.Z. (2022). Why reuse spent adsorbents? The latest challenges and limitations. Science of The Total Environment, 822, 153612. doi: 10.1016/j.scitotenv.2022.153612
Gupta, V.K., Agarwal, S., & Saleh, T.A. (2011). Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. Journal of Hazardous Materials, 185, 17–23. doi: 10.1016/j.jhazmat.2010.08.053
Hasnain, M., Munir, N., Abideen, Z., Zulfiqar, F., Werner, Koyro, H., El-Naggar, A., Caçador, I., Duarte, B., Rinklebe, J., & Hong Yong, J.W. (2023). Biochar-plant interaction and detoxification strategies under abiotic stresses for achieving agricultural resilience: A critical review. Ecotoxicology and Environmental Safety, 249, 114408. doi: 10.1016/j.ecoenv.2022.114408
Hussain, A., Madan, S., & Madan, R. (2021). Removal of Heavy Metals from Wastewater by Adsorption. IntechOpen, 1, 2-22. doi: 10.5772/intechopen.95841
Ingrosso, C., Panniello, A., Comparelli, R., Curri, M.L., & Striccoli, M. (2010). Colloidal Inorganic Nanocrystal Based Nanocomposites: Functional Materials for Micro and Nanofabrication. Materials, 3(2), 1316–1352. doi: 10.3390/ma3021316
Jagadeesh, N., & Sundaram, B. (2023). Adsorption of Pollutants from Wastewater by Biochar: A Review. Journal of Hazardous Materials Advances, 9, 100226. doi: 10.1016/j.hazadv.2022.100226
Jin, H., Capareda, S., Chang, Z., Gao, J., Xu, Y., & Zhang, J. (2014). Biochar pyrolytically produced from municipal solid wastes for aqueous As (V) removal: Adsorption property and its improvement with KOH activation. Bioresource Technology, 169, 622–629. doi: 10.1016/j.biortech.2014.06.103
Kannan, N., & Meenakshisundaram, M. (2002). Adsorption of Congo Red on Various Activated Carbons. A Comparative Study. Water, Air, and Soil Pollution, 138, 289-305. doi: 10.1023/A:1015551413378
Karić, N., Alexandra, S., Maia, Teodorović, A., Atanasova, N., Langergraber, G., Crini, G., Ribeiro, A.R.L., & Dolić v. (2022). Bio-waste valorisation: Agricultural wastes as biosorbents for removal of (in)organic pollutants in wastewater treatment. Chemical Engineering Journal Advances, 9, 100239. doi: 10.1016/j.ceja.2021.100239
Khalfaoui, A., Mahfouf Bouchareb, E., Derbal, K., Boukhaloua, S., Chahbouni, B., & Bouchareb, R. (2022). Uptake of Methyl Red dye from aqueous solution using activated carbons prepared from Moringa Oleifera shells. Cleaner Chemical Engineering, 4, 100069. doi: 10.1016/j.clce.2022.100069
Khan, S., Cao, Q., Zheng, Y.M., Huang, Y.Z., & Zhu, Y.G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution, 152(3), 686-692. doi: 10.1016/j.envpol.2007.06.056
Khan, U., Ogbaga, C.C., Omolabake Abiodun, O.A., Adeleke, A.A., Ikubanni, P.P., Okoye, P.U., & Okolie, J.A. (2023). Assessing absorption-based CO2 capture: Research progress and techno-economic assessment overview. Carbon Capture Science and Technology, 8, 100125. doi: 10.1016/j.ccst.2023.100125
Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908-931. doi: 10.1016/j.arabjc.2017.05.011
Kolesnikov, S., Minnikova, T., & Kazeev, K. (2022). Assessment of the Ecotoxicity of Pollution by Potentially Toxic Elements by Biological Indicators of Haplic Chernozem of Southern Russia (Rostov region). Water, Air, and Soil Pollution, 233, 18. doi: 10.1007/s11270-021-05496-3
Kuma, N.S. (2023). Smart and innovative nanotechnology applications for water purification. Hybrid Advances, 3, 100044. doi: 10.1016/j.hybadv.2023.100044
Kuppusamy, S., Thavamani, P., Megharaj, M., & Naidu, R. (2015). Bioremediation potential of natural polyphenol rich green wastes: A review of current research and recommendations for future directions. Environmental Technology and Innovation, 4, 17-28. doi: 10.1016/j.eti.2015.04.001
Kwame Nti, E., Jerry Cobbina, S., Efua Attafuah, E., Dziedzorm Senanu, L., Amenyeku, G., Amoah Gyan, M., Forson, D., & Safo, A.R. (2023). Water pollution control and revitalization using advanced technologies: Uncovering artificial intelligence options towards environmental health protection, sustainability and water security. Heliyon, 9(7), e18170. doi: 10.1016/j.heliyon.2023.e18170
Le Ba, T., Mahian, O., & Wongwises, S. (2020). Review on the recent progress in the preparation and stability of graphene-based nanofluids. Journal of Thermal Analysis and Calorimetry, 142, 1145–1172. doi: 10.1007/s10973-020-09365-9
Maleki, F., Razmi, H., Rashidi, M.R., Yousefi, M., & Ghorbani, M. (2024). Recent advances in developing electrochemical (bio) sensing assays by applying natural polymer-based electrospun nanofibers: A comprehensive review. Microchemical Journal, 197, 109799. doi: 10.1016/j.microc.2023.109799
Maslova, M., Mudruk, N., Ivanets, A., Shashkova, I., & Kitikova, N. (2021). The effect of pH on removal of toxic metal ions from aqueous solutions using composite sorbent based on Ti-Ca-Mg phosphates. Journal of Water Process Engineering, 40, 101830. doi: 10.1016/j.jwpe.2020.101830
Mahamuni, N.N., & Adewuyi, Y.G. (2010). Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: A review with emphasis on cost estimation. Ultrasonics Sonochemistry, 17(6), 990-1003. doi: 10.1016/j.ultsonch.2009.09.005
Martínez-Carmona, M., & Vallet-Regí, M. (2020). Advances in Laser Ablation Synthesized Silicon-Based Nanomaterials for the Prevention of Bacterial Infection. Nanomaterials (Basel), 10(8), 1443. doi: 10.3390/nano10081443
Matei, E., Râpă, M., Predescu, A.M., Țurcanu, A.A., Vidu, R., Predescu, C., Bobirica, C., Bobirica, L., & Orbeci, C. (2021). Valorization of Agri-Food Wastes as Sustainable Eco-Materials for Wastewater Treatment: Current State and New Perspectives. Materials, 14(16), 4581. doi: 10.3390/ma14164581 
Mbarek, W.B., Escoda, L., Saurina, J., Pineda, E., Alminderej, F.M., Khitouni, M., & Suñol, J.J. (2022). Nanomaterials as a Sustainable Choice for Treating Wastewater: A Review. Materials (Basel), 15(23), 8576. doi: 10.3390/ma15238576
Mortada, W., Moustafa, A., Ismail, A., Hassanien, M., & Aboud, A. (2015). Microwave assisted decoration of titanium oxide nanotubes with CuFe2O4 quantum dots for solid phase extraction of uranium. RSC Advances, 5, 62414-62423. doi: 10.1039/C5RA10304E
Mulay, M.R., & Martsinovich, N. (2022). Water Pollution and Advanced Water Treatment Technologies. In: Brears, R.C. (Eds) The Palgrave Encyclopedia of Urban and Regional Futures. Palgrave Macmillan, Cham. 220 p. doi: 10.1007/978-3-030-87745-3_189
Mulder, M. (2002). Basic Principles of Membrane Technology. Kluwer Academic Publishers, Second edition. New York, USA. 1-21.
Neha, R., Adithya, S., Sai Jayaraman, R., Panchamoorthy Gopinath, K., Pandimadevi, M., Praburaman, L., & Jayaseelan, A. (2021). Nano-adsorbents an effective candidate for removal of toxic pharmaceutical compounds from aqueous environment: A critical review on emerging trends. Chemosphere, 27, 129852. doi: 10.1016/j.chemosphere.2021.129852
Neisan, R.S., Saady, N.M.C., Bazan, C., Zendehboudi, S., & Albayati, T.M. (2023). Adsorption of copper from water using TiO2-modified activated carbon derived from orange peels and date seeds: Response surface methodology optimization. Heliyon, 9(11), e21420. doi: 10.1016/j.heliyon.2023.e21420
Ngeno, E.C., Kinyua, E.M., Chaker Necibi, M., Abushaban, A., & Sillanpää, M. (2022). Sustainable re-utilization of waste materials as adsorbents for water and wastewater treatment in Africa: Recent studies, research gaps, and way forward for emerging economies. Environmental Advances, 9, 100282. doi: 10.1016/j.envadv.2022.100282
Nieto-Márquez, A., Pinedo-Flores, A., Picasso, G., Atanes, E., & Kou, R.S. (2017). Selective adsorption of Pb2+, Cr3+ and Cd2+ mixtures on activated carbons prepared from waste tires. Journal of Environmental Chemical Engineering, 5, 1060-1067. doi: 10.1016/j.jece.2017.01.034
Nishat, A., Yusuf, M., Qadir, A., Ezaier, Y., Vambol, V., Ijaz Khan, M., Ben Moussa, S., Kamyab, H., Sehgal, S.S., Prakash, C., Yang, H.H., Ibrahim, H., & Eldin, S.M. (2023). Wastewater treatment: A short assessment on available techniques. Alexandria Engineering Journal, 76, 505-516. doi: 10.1016/j.aej.2023.06.054 
Ogbu, C., Twumasi, Y., Ning, Z., Attamah, G., Ezeaku, V., & Oladigbolu, O. (2022). Analysis of Forest Waste Management and Recycling Potential in Nigeria. Natural Resources, 13, 191-205. doi: 10.4236/nr.2022.1310013
Okoro, H.K., Orosun, M.M., Oriade, F.A., Momoh-Salami, T.M., Ogunkunle, C.O., Adeniyi, A.G., Zvinowanda, C. & Ngila, J.C. (2023). Potentially Toxic Elements in Pharmaceutical Industrial Effluents: A Review on Risk Assessment, Treatment, and Management for Human Health. Sustainability, 15(8), 6974. doi: 10.3390/su15086974 
Pastor-Villegas, J., Durán-Valle, C., Valenzuela-Calahorro, C., & Gómez-Serrano, V. (1998). Organic chemical structure and structural shrinkage of chars prepared from rockrose. Carbon, 36, 1251-1256. doi: 10.1016/S0008-6223(97)00200-5
Priya, A.K., Gnanasekaran, L., Dutta, K., Rajendran, S., Balakrishnan, D., & Soto-Moscoso, M. (2022). Biosorption of heavy metals by microorganisms: Evaluation of different underlying mechanisms. Chemosphere, 307(Pt 4), 135957. doi: 10.1016/j.chemosphere.2022.135957
Qiu, C., Jiang, L., Gao, Y., & Sheng, L. (2023). Effects of oxygen-containing functional groups on carbon materials in supercapacitors: A review. Materials and Design, 230, 111952. doi: 10.1016/j.matdes.2023.111952
Rashid, A., Bhatti, H.N., Iqbal, M., & Noreen S. (2016). Fungal biomass composite with bentonite efficiency for nickel and zinc adsorption: a mechanistic study. Ecological Engineering, 91, 459-471. doi: 10.1016/j.ecoleng.2016.03.014
Rudi, N.N., Suliza Muhamad, N., Te Chuan, L., Alipal, J., Omar, S., Hamidon, N., Hazren Abdul Hamid, N., Mohamed Sunar, N., Ali, R., & Harun, H. (2020). Evolution of adsorption process for manganese removal in water via agricultural waste adsorbents. Heliyon, 6(9), e05049. doi: 10.1016/j.heliyon.2020.e05049
Saberi Riseh, R., Gholizadeh Vazvani, M., Hassanisaadi, M., & Kumar Thakur, V. (2023). Agricultural wastes: A practical and potential source for the isolation and preparation of cellulose and application in agriculture and different industries. Industrial Crops and Products, 208, 117904. doi: 10.1016/j.indcrop.2023.117904
Sahu, P., & Verma, S. (2021). Removal efficiency assessment of adsoebent based on banana peel for methylene blue. International Research Journal of Modernization in Engineering Technology and Science, 3(9), 1-9. https://www.irjmets.com/uploadedfiles/paper/volume_3/issue_9_september_2021/16402/final/fin_irjmets1632755481.pdf
Sarkar, M., Acharya, P.K., & Bhattacharya, B. (2003). Modeling the adsorption kinetics of some priority organic pollutants in water from diffusion and activation energy parameters. Journal of Colloid and Interface Science, 266, 28-32. doi: 10.1016/s0021-9797(03)00551-4
Santhi, T., & Manonmani, S. (2011). Malachite green removal from aqueous solution by the peel of Cucumis sativa fruit. Clean–SoilAirWater, 39, 162–170. doi: 10.1002/clen.201000077
Sen, T.K. (2023). Agricultural Solid Wastes Based Adsorbent Materials in the Remediation of Heavy Metal Ions from Water and Wastewater by Adsorption: A Review. Molecules, 28(14), 5575. doi: 10.3390/molecules28145575
Schweinfurth, S.P. (2022). Coal—A Complex Natural Resource. An overview of of factors affecting coal quality and use in the United States. Available at: https://pubs.usgs.gov/circ/c1143/html/text.html (visited 31 May 2022)
Sharma, M., Usmani, Z., Kumar Gupta, V., & Bhat, R. (2021). Valorization of fruits and vegetable wastes and by-products to produce natural pigments. Critical Reviews in Biotechnology, 22, 1-20. doi: 10.1080/07388551.2021.1873240
Silva, J.A. (2023). Wastewater Treatment and Reuse for Sustainable Water Resources Management: A Systematic Literature Review. Sustainability, 15(14), 10940. doi: 10.3390/su151410940
SME. (2023). Society for Mining, Metallurgy & Exploration. Coal's Importance to the World. Available at: https://www.smenet.org (visited 22 May 2023)
Solangi, N.H., Kumar, J., Mazari, S.A., Ahmed, S., Fatima, N., & Mujawar Mubarak, N. (2021). Development of fruit waste derived bio-adsorbents for wastewater treatment: A review. Journal of Hazardous Materials, 416, 125848. doi: 10.1016/j.jhazmat.2021.125848
Soliman, N., Mohamed, H.S., Elsayed, R.H., Elmedny, N.M., Elghandour, A.H., & Ahmed, S.A. (2019). Removal of chromium and cadmium ions from aqueous solution using residue of Rumex dentatus L. Plant waste. Desalination and Water Treatment, 149, 181-193. doi: 10.5004/dwt.2019.23862
Soliman, N.K., & Moustafa, A.F. (2020). Industrial solid waste for heavy metals adsorption features and challenges; a review. Journal of Materials Research and Technology, 9(5), 10235-10253. doi: 10.1016/j.jmrt.2020.07.045
Srivatsav, P., Bhargav, B.S., Shanmugasundaram, V., Arun, J., Gopinath, K.P., & Bhatnagar, A. (2020). Biochar as an Eco-Friendly and Economical Adsorbent for the Removal of Colorants (Dyes) from Aqueous Environment: A Review. Water, 12(12), 3561. doi: 10.3390/w12123561
Tamjidi, S., Moghadas, B.K., Esmaeili, H., Khoo, F.S., Gholami, G., & Ghasemi, M. (2021). Improving the surface properties of adsorbents by surfactants and their role in the removal of toxic metals from wastewater: A review study. Process Safety and Environmental Protection, 148, 775-795. doi: 10.1016/j.psep.2021.02.003
Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., & Sutton, D.J. (2012). Heavy metal toxicity and the environment. Experientia Supplementum, 101, 133-164. doi: 10.1007/978-3-7643-8340-4_6
Ungureanu, E.L., Mocanu, A.L., Stroe, C.A., Panciu, C.M., Berca, L., Sionel, R.M., & Mustatea, G. (2023). Agricultural Byproducts Used as Low-Cost Adsorbents for Removal of Potentially Toxic Elements from Wastewater: A Comprehensive Review. Sustainability, 15(7), 5999. doi: 10.3390/su15075999
Unuabonah, E.I., & Taubert, A. (2014). Clay–polymer nanocomposites (CPNs): Adsorbents of the future for water treatment. Applied Clay Science, 99, 83–92. doi: 10.1016/j.clay.2014.06.016
Vecino, X., Devesa-Rey, R., & Cruz, J.M. (2013). Entrapped Peat in Alginate Beads as Green Adsorbent for the Elimination of Dye Compounds from Vinasses. Water, Air, and Soil Pollution, 224, 1448. doi: 10.1007/s11270-013-1448-x
Vijayaraghavan, K., & Balasubramanian, R. (2015). Is biosorption suitable for decontamination of metal-bearing wastewaters? A critical review on the state-of-the-art of biosorption processes and future directions. Journal of Environmental Management, 160, 283-296.
Wang, S., Zhang, H., Wang, J., & Hou, H. (2021). Application of Biochar for Wastewater Treatment. In: Thapar Kapoor, R., Treichel, H., Shah, M.P. (eds) Biochar and its Application in Bioremediation. Springer, Singapor,: 5-50. doi: 10.1007/978-981-16-4059-9_4
Wysocka, I. (2023). Absorption processes in reducing the odor nuisance of wastewater, MethodsX, 10, 101996. doi: 10.1016/j.mex.2023.101996
Xiang, H., Min, X., Tang, C.J., Sillanpää, M., & Zhao, F. (2022). Recent advances in membrane filtration for heavy metal removal from wastewater: A mini review. Journal of Water Process Engineering, 49, 103023. doi: 10.1016/j.jwpe.2022.103023
Yeo, K.F.H., Li, C., Zhang, H., Chen, J., Wang, W., & Dong, Y. (2021). Arsenic Removal from Contaminated Water Using Natural Adsorbents: A Review. Coatings, 11(11), 1407. doi: 10.3390/coatings11111407
Yin, G., Lin, Z., Jiang, X., Qiu, M., & Sun, J. (2020). How do the industrial land use intensity and dominant industries guide the urban land use? Evidences from 19 industrial land categories in ten cities of China. Sustainable Cities and Society, 53, 101978. doi: 10.1016/j.scs.2019.101978
Younas, F., Mustafa, A., Farooqi, Z.U.R., Wang, X., Younas, S., Mohy-Ud-Din, W., Ashir Hameed, M., Mohsin Abrar, M., Maitlo, A.A., & Noreen, S. (2021). Current and Emerging Adsorbent Technologies for Wastewater Treatment: Trends, Limitations, and Environmental Implications. Water, 13(2), 215. doi: 10.3390/w13020215
Zhang, Q.W., Lin, L.G., & Ye, W.C. (2018). Techniques for extraction and isolation of natural products: a comprehensive review. Chinese Medicine, 13, 20. doi: 10.1186/s13020-018-0177-x
Zhu, Y., Luan, Y., Zhao, Y., Liu, J., Duan, Z., & Ruan, R. (2023). Current Technologies and Uses for Fruit and Vegetable Wastes in a Sustainable System: A Review. Foods., 12(10), 1949. doi: 10.3390/foods12101949
Zimmermann, B., Gardian, H., & Rohrig, K. (2018). Cost-Optimal Flexibilization of Drinking Water Pumping and Treatment Plants. Water, 10(7), 857. doi: 10.3390/w10070857
CAPTCHA Image