Document Type : Review Article

Authors

1 Nanotechnology Research Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

2 Soil and Water Research Department, Agricultural and Natural Resources Research and Education Center of Isfahan, Agricultural Research, Education and Extension Organization (AREEO), Isfahan, Iran

Abstract

Today, microplastics are considered an emerging pollutant due to their high stability in the environment and inherent toxicity, making them a significant global concern, particularly in soil and groundwater. Living organisms can easily ingest microplastics, leading to bioaccumulation and causing acute and chronic harm, as well as carcinogenicity, developmental problems, and genotoxicity. . The stability and biological dose of microplastics are important factors that play an important role in their toxicity and risk level. Microplastics enter the soil and groundwater environment from various sources, including the atmosphere, interactions with surface water bodies, urban infrastructure, or agricultural soils. Studies show that mechanical, physical, chemical, and biological transport processes can influence the dynamics and behavior of microplastics in the soil and groundwater environments. Due to their hydrophobic nature, high adsorption capacity, and large surface area, microplastics act as adsorbents and activators of other pollutants, leading to the proliferation of contamination. Therefore, the remediation of contaminated resources is essential for protecting the ecosystem and human health using innovative materials and technologies.  Nanotechnology plays a significant role as a comprehensive approach in three areas: absorption, membrane processes, and photocatalytic degradation of microplastics. In addition to contaminated environment reclamation, a sustainable approach to reducing,  reusing, and recycling plastic waste is necessary. Strategies to manage microplastic pollution in groundwater require a holistic approach that includes legislation, stakeholder engagement, research, and awareness-raising in developed and developing countries, with an emphasis on reducing microplastics at the source, improving waste management, and promoting responsible use of plastics.

Keywords

Main Subjects

سالاری درگی، مرجان، و خراسانی، محمد باقر. (1401). بررسی میکروپلاستیک‌‏ها به عنوان آلاینده نوظهور در منابع و اثرات بهداشتی بر روی انسان، مطالعه موردی. پژوهش و فناوری محیط‏زیست، 7(11)، 13-26. https://dorl.net/dor/20.1001.1.26763060.1401.7.11.2.2
شعبانلو، حامد، صفاری بیدهندی، سارا، علی‌بیگی، طیبه، و مؤمنی، فردوس. (1401). آلودگی و مخاطرات زیست محیطی میکروپلاستیک و راهکارهای کاهش آن در اکوسیستم‏های آبی. مجله ترویجی آبزیان دریای خزر، 7(2)، 27-36. https://fcsj.areeo.ac.ir/article_130156.html
مهاجری، لیلا، شایسته، علی اکبر، زاهد، محمدعلی، و پاکروان، مرتضی. (1400). اثر و سرنوشت ریزپلاستیک‌ها در زیست بوم دریا. اقیانوس‌شناسی، 12(48)، 53-65. http://joc.inio.ac.ir/article-1-1594-fa.html
Alimi, O. S., Farner Budarz, J., Hernandez, L. M., & Tufenkji, N. (2018). Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport. Environmental Science and Technology, 52, 1704–1724. https://doi.org/10.1021/acs.est.7b05559
All´e, P. H., Garcia-Mu˜noz, P., Adouby, K., Keller, N., & Robert, D. (2021). Efficient photocatalytic mineralization of polymethylmethacrylate and polystyrene nanoplastics by TiO2/β-SiC alveolar foams. Environmental Chemistry Letters, 19, 1803–1808. https://doi.org/10.1007/s10311-020-01099-2
 
Arenas, L. R., Gentile, S. R., Zimmermann, S., & Stoll, S. (2021). Nanoplastics adsorption and removal efficiency by granular activated carbon used in drinking water treatment process. Science of the Total Environment, 791,148175. https://doi.org/10.1016/j.scitotenv.2021.148175
Ariza-Tarazona, M. C., Villarreal-Chiu, J. F., Barbieri, V., Siligardi, C., & Cedillo-Gonz´alez, E. I. (2019). New strategy for microplastic degradation: green photocatalysis using a protein-based porous N-TiO2 semiconductor. Ceramics Internationals, 45, 9618–9624. https://doi.org/10.1016/j.ceramint.2018.10.208
Bao, K., Jiang, H., Su, P., Lu, P., & Yan, Z. (2023). Vertical profiles of microplastics in the hyporheic zone sediment: a case study in the Yangtze River. Nanjing Section. Sustainability, 15 (10), 7895. https://doi.org/10.3390/su15107895
Barchiesi, M., Chiavola, A., Di Marcantonio, C., & Boni, M. R. (2020). Presence and fate of microplastics in the water sources: focus on the role of wastewater and drinking water treatment plants. Journal of Water Process Engineering, 40, 101787. https://doi.org/10.1016/j.jwpe.2020.101787
Bridson, J. H., Gaugler, E. C., Smith, D. A., Northcott, G. L., & Gaw, S. (2021). Leaching and extraction of additives from plastic pollution to inform environmental risk: a multidisciplinary review of analytical approaches. Journal of Hazardous Materials, 414, 125571. https://doi.org/10.1016/j.jhazmat.2021.125571
Calero, M., Godoy, V., Quesada, L., & Martín-Lara, M. Á. (2021). Green strategies for microplastics reduction. Current Opinion in Green and Sustainable Chemistry, 28, 100442. https://doi.org/10.1016/j.cogsc.2020.100442
Cheriyamundath, S., & Sirisha, V. L. (2021). Nanotechnology-based wastewater treatment. Water and Environment Journal, 35 (1), 123-132. https://doi.org/10.1111/wej.12610
Chia, R. W., Lee, J.-Y., Kim, H., & Jang, J. (2021). Microplastic pollution in soil and groundwater: a review. Environmental Chemistry Letters, 19 (6), 4211-4224.  https://doi.org/10.1007/s10311-021-01297-6
Cohen, N., & Radian, A. (2022). Microplastic textile fibers accumulate in sand and are potential sources of micro (nano) plastic pollution. Environmental Science of Technology, 56 (24), 17635–17642. https://doi.org/10.1021/acs.est.2c05026
Connon, R., Dewhurst, R. E., Crane, M., & Callaghan, A. (2003). Haem peroxidase activity in Daphnia magna: a biomarker for sub-lethal toxicity assessments of kerosene-contaminated groundwater. Ecotoxicology, 12, 387–395. https://doi.org/10.1023/A:1026195621777
Dalmau-Soler, J., Ballesteros-Cano, R., aR Boleda, M., Paraira, M., Ferrer, N., & Lacorte, S. (2021). Microplastics from headwaters to tap water: occurrence and removal in a drinking water treatment plant in Barcelona Metropolitan area (Catalonia, NE Spain). Environmental Science and Pollution Research, 28, 59462–59472. https://doi.org/10.1007/s11356-021-13220-1
Das, J., Yadav, E., & Poluri, K. M. (2024). A Review on the Role of Nanotechnological Interventions in Sequestration, Mitigation and Value-added Product Conversion of Micro/Nano Plastics. Environmental Science: Nano, 12, 189-218. https://doi.org/10.1039/D4EN00267A
Diggle, A., & Walker, T. R. (2020). Implementation of harmonized Extended Producer Responsibility strategies to incentivize recovery of single-use plastic packaging waste in Canada. Waste Management, 110, 20-23. https://doi.org/10.1016/j.wasman.2020.05.013
Ding, R., Dong, Y., Ouyang, Z., Zuo, X., Zhang, Y., & Guo, X. (2023). Reducing uncertainty and confronting ignorance about the potential impacts of microplastic on animals: A critical review. TrAC Trends in Analytical Chemistry,171, 117484. https://doi.org/10.1016/j.trac.2023.117484
Domínguez-Jaimes, L. P., Cedillo-Gonz´alez, E. I., Lu´evano-Hip´olito, E., Acu˜na-Bedoya, J. D., & Hern´andez-L´opez, J. M. (2021). Degradation of primary nanoplastics by photocatalysis using different anodized TiO2 structures. Journal of Hazardous Materials, 413, 125254. https://doi.org/10.1016/j.jhazmat.2021.125452
Dong, S., Yu, Z., Huang, J., & Gao, B. (2022). Fate and transport of microplastics in soils and groundwater. In Emerging Contaminants in Soil and Groundwater Systems, Chapter 9 (pp. 301-329). Elsevier Inc. Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, United States. https://doi.org/10.1016/B978-0-12-824088-5.00001-X
Esfandiari, A., Abbasi, S., Peely, A. B., Mowla, D., Ghanbarian, M. A., Oleszczuk, P., & Turner, A. (2022). Distribution and transport of microplastics in groundwater (Shiraz aquifer, southwest Iran). Water research, 220, 118622. https://doi.org/10.1016/j.watres.2022.118622
Fahrenfeld, N., Arbuckle-Keil, G., Beni, N. N., & Bartelt-Hunt, S. L. (2019). Source tracking microplastics in the freshwater environment. TrAC Trends in Analytical Chemistry, 112, 248-254. https://doi.org/10.1016/j.trac.2018.11.030
Fryczkowska, B., & Przywara, L. (2021). Removal of microplastics from industrial wastewater utilizing an ultrafiltration composite membrane rGO/PAN application, desalination. Water treatment, 214, 252–262. https://doi.org/10.5004/dwt.2021.26665
Fu, D., Chen, C. M., Qi, H., Fan, Z., Wang, Z., Peng, L., & Li, B. (2020). Occurrences and distribution of microplastic pollution and the control measures in China. Marine Pollution Bulletin, 153, 110963. https://doi.org/10.1016/j.marpolbul.2020.110963
Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), 2375-2548. https://doi.org/10.1126/sciadv.1700782
Gnanasekaran, G., Arthanareeswaran, G., & Sun Mok, Y. (2021). A high-flux metal-organic framework membrane (PSF/MIL-100 (Fe)) for the removal of microplastics adsorbing dye contaminants from textile wastewater. Separation and Purification Technology, 277, 119655. https://doi.org/10.1016/j.seppur.2021.119655
Grbic, J., Nguyen, B., Guo, E., You, J. B., Sinton, D., & Rochman, C. M. (2019). Magnetic extraction of microplastics from environmental samples. Environmental Science & Technology Letters, 6 68–72. https://doi.org/10.1021/acs.estlett.8b00671
Gui, X., Ren, Z., Xu, X., Chen, X., Chen, M., Wei, Y., Zhao, L., Qiu, H., Gao, B., & Cao, X. (2022). Dispersion and transport of microplastics in three water-saturated coastal soils. Journal of Hazardous Matereials, 424, 127614. https://doi.org/10.1016/j.jhazmat.2021.127614
Guo, J.-J., Huang, X.-P., Xiang, L., Wang, Y.-Z., Li, Y.-W., Li, H., Cai, Q.-Y., Mo, C.-H., & Wong, M.-H. (2020). Source, migration and toxicology of microplastics in soil. Environment international, 137, 105263. https://doi.org/10.1016/j.envint.2019.105263
Hanif, M. A., Ibrahim, N., Dahalan, F. A., Ali, U. F. M., Hasan, M., & Jalil, A. A. (2022). Microplastics and nanoplastics: recent literature studies and patents on their removal from aqueous environment. Science of the Total Environment, 810, 152115. https://doi.org/10.1016/j.scitotenv.2021.152115
Huang, D., Wang, X., Yin, L., Chen, S., Tao, J., Zhou, W., Chen, H., Zhang, G., & Xiao, R. (2022). Research progress of microplastics in soil-plant system: ecological effects and potential risks. Science of the Total Environment, 812, 151487. https://doi.org/10.1016/j.scitotenv.2021.151487
Huang, J., Chen, H., Zheng, Y., Yang, Y., Zhang, Y., & Gao, B. (2021). Microplastic pollution in soils and groundwater: Characteristics, analytical methods and impacts. Chemical Engineering Journal, 425, 131870. https://doi.org/10.1016/j.cej.2021.131870
Huffer, T., Praetorius, A., Wagner, S., Von der Kammer, F., & Hofmann, T. (2017). Microplastic exposure assessment in aquatic environments: learning from similarities. Environmental Science and Technollogy, 51, 2499–2507. https://doi.org/10.1021/acs.est.6b04054
Igalavithana, A. D., Mahagamage, M. G. Y., Gajanayake, P., Abeynayaka, A., Gamaralalage, P. J. D., Ohgaki, M., Takenaka, M., Fukai, T., & Itsubo, N. (2022). Microplastics and potentially toxic elements: potential human exposure pathways through agricultural lands and policy based countermeasures. Microplastics, 1(1), 102-120.  https://doi.org/10.3390/microplastics1010007
Islam, M. S., Lee, Z., Shaleh, A., & Soo, H. S. (2024). The United Nations Environment Assembly resolution to end plastic pollution: Challenges to effective policy interventions. Environment, Development and Sustainability, 26(5), 10927-10944. https://doi.org/10.1007/s10668-023-03639-6
Kang, J., Zhou, L., Duan, X., Sun, H., Ao, Z., & Wang, S. (2019). Degradation of cosmetic microplastics via functionalized carbon nanosprings. Matter, 1, 745–758.
Kida, M., & Koszelnik, P. (2021). Investigation of the presence and possible migration from microplastics of phthalic acid esters and polycyclic aromatic hydrocarbons. Journal of Polymers and the Environment, 29(2), 599-611. https://doi.org/10.1007/s10924-020-01899-1
Klein, M., & Fischer, E. K. (2019). Microplastic abundance in atmospheric deposition within the metropolitan area of Hamburg, Germany. Science of The Total Environment 685, 96–103. https://doi.org/10.1016/j.scitotenv.2019.05.405
Kreyling, W. G., Semmler-Behnke, M., Seitz, J., Scymczak, W., Wenk, A., Mayer, P., Takenaka, S., & Oberdörster, G. (2009). Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. Inhalation toxicology, 21(sup1), 55-60. https://doi.org/10.1080/08958370902942517
Kumar, R., Sharma, P., Manna, C., & Jain, M. (2021). Abundance, interaction, ingestion, ecological concerns, and mitigation policies of microplastic pollution in riverine ecosystem: a review. Sci. Total Environ., 782, 146695. https://doi.org/10.1016/j.scitotenv.2021.146695
Larue, C., Sarret, G., Castillo-Michel, H., & PradasdelReal, A. E. (2021). A critical review on the impacts of nanoplastics and microplastics on aquatic and terrestrial photosynthetic organisms. Small 17 (20), 2005834. https://doi.org/10.1002/smll.202005834
Laxman, K., AlRashdi, M., AlSabahi, J., AlAbri, M., & Dutta, J. (2017). Supported versus colloidal zinc oxide for advanced oxidation processes. Applied Surface Science, 411, 285–290. https://doi.org/10.1016/j.apsusc.2017.03.139
Li, M., Zhang, M., Rong, H., Zhang, H., L., Han, P., & Tong, M. (2021a). Transport and deposition of plastic particles in porous media during seawater intrusion and groundwater-seawater displacement processes. Science of the Total Environment, 781, 146752. https://doi.org/10.1016/j.scitotenv.2021.146752
Li, J., Wang, B., Chen, Z., Ma, B., & Chen, J. P. (2021b). Ultrafiltration membrane fouling by microplastics with raw water: behaviors and alleviation methods. Chemical Engineering Journal, 410, 128174. https://doi.org/10.1016/j.cej.2020.128174
Li, W., Zu, B., Yang, Q., Guo, J., & Li, J. (2023). Sources, distribution, and environmental effects of microplastics: a systematic review. RSC Advances, 13 (23), 15566–15574. https://doi.org/10.1039/D3RA02169F
Li, F., Huang, D., Wang, G., Cheng, M., Chen, H., Zhou, W., Xiao, R., Li, R., Du, L., & Xu, W. (2024). Microplastics/nanoplastics in porous media: Key factors controlling their transport and retention behaviors Science of the Total Environment, 926, 171658. https://doi.org/10.1016/j.scitotenv.2024.171658
Liu, K., Wang, X., Fang, T., Xu, P., Zhu, L., & Li, D. (2019). Source and potential risk assessment of suspended atmospheric microplastics in Shanghai. Science of the Total Environment, 675, 462–471. https://doi.org/10.1016/j.scitotenv.2019.04.110
Liu, W., Zhang, J., Liu, H., Guo, X., Zhang, X., Yao, X., Cao, Z., & Zhang, T. (2021). A review of the removal of microplastics in global wastewater treatment plants: characteristics and mechanisms. Environment International, 146, 106277. https://doi.org/10.1016/j.envint.2020.106277
Liu, Y.-c., Wu, L., Shi, G.-w., Cao, S.-w., & Li, Y.-s. (2022a). Characteristics and sources of microplastic pollution in the water and sediments of the Jinjiang River Basin, Fujian Province, China. China Geology, 5 (3), 429–438.  https://doi.org/10.31035/cg2022051
Liu, Q., Chen, Y., Chen, Z., Yang, F., Xie, Y., & Yao, W. (2022b). Current status of microplastics and nanoplastics removal methods: Summary, comparison and prospect. Science of the total environment, 851, 157991. https://doi.org/10.1016/j.scitotenv.2022.157991
Liu, Q., Liu, L., Huang, J., Gu, L., Sun, Y., Zhang, L., Lyu, K., & Yang, Z. (2022c). The response of life history defense of cladocerans under predation risk varies with the size and concentration of microplastics. Journal of Hazardous Materials, 427, 127913. https://doi.org/10.1016/j.jhazmat.2021.127913
Llorente-García, B. E., Hern´andez-L´opez, J. M., Zaldívar-Cadena, A. A., Siligardi, C., & Cedillo-Gonz´alez, E. I. (2020). First insights into photocatalytic degradation of HDPE and LDPE microplastics by a mesoporous N-TiO2 coating: effect of size and shape of microplastics. Coatings, 10(7), 658. https://doi.org/10.3390/coatings10070658
Ma, B., Xue, W., Ding, Y., Hu, C., Liu, H., & Qu, J. (2019). Removal characteristics of microplastics by fe-based coagulants during drinking water treatment. Environmental Science: Advances journal, 78, 267–275. https://doi.org/10.1016/j.jes.2018.10.006
Mishra, A. K., Singh, J., & Mishra, P. P. (2021). Microplastics in polar regions: an early warning to the world’s pristine ecosystem. Science of the Total Environment, 784, 147149. https://doi.org/10.1016/j.scitotenv.2021.147149
Misra, A., Zambrzycki, C., Kloker, G., Kotyrba, A., Anjass, M. H., Franco Castillo, I., Mitchell, S. G., Güttel, R., & Streb, C. (2020). Water purification and microplastics removal using magnetic polyoxometalate-supported ionic liquid phases (magPOM-SILPs). Angewandte Chemie - International Edition, 59, 1601–1605. https://doi.org/10.1002/anie.201912111
Moteallemi, A., Dehghani, M. H., Momeniha, F., & Azizi, S. (2024). Nanoplastics as emerging contaminants: A systematic review of analytical processes, removal strategies from water environments, challenges and perspective. Microchemical Journal, 207, 111884. https://doi.org/10.1016/j.microc.2024.111884
Mousazadehgavan, M., Khademi, S., Naeini, A. M., Yoosefdoost, I., Vashisht, V., Hashemi, M., Manouchehri, M., & Hashim, K. (2024). Fate of micro-and nanoplastics in water bodies: A critical review of current challenges, the next generation of advanced treatment techniques and removal mechanisms with a special focus on stormwater. Journal of Water Process Engineering, 67, 106159. https://doi.org/10.1016/j.jwpe.2024.106159
Natesan, U., Vaikunth, R., Kumar, P., Ruthra, R., & Srinivasalu, S. (2021). Spatial distribution of microplastic concentration around landfill sites and its potential risk on groundwater. Chemosphere, 277, 130263. https://doi.org/10.1016/j.chemosphere.2021.130263
Ni, B.-J., Zhu, Z.-R., Li, W.-H., Yan, X., Wei, W., Xu, Q., Xia, Z., Dai, X., & Sun, J. (2020). Microplastics mitigation in sewage sludge through pyrolysis: the role of pyrolysis temperature. Environmental science & technology letters, 7(12), 961-967. https://doi.org/10.1021/acs.estlett.0c00740
Nizzetto, L., Futter, M., & Langaas, S. (2016). Are agricultural soils dumps for microplastics of urban origin? Environmetal Science and Technollogy, 50, 10777–10779. https://doi.org/10.1021/acs.est.6b04140
O’Connor, D., Pan, S., Shen, Z., Song, Y., Jin, Y., Wu, W. M., & Hou, D. (2019). Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles. Environmental Pollution 249, 527–534. https://doi.org/10.1016/j.envpol.2019.03.092
O’Kelly, B. C., El-Zein, A., Liu, X., Patel, A., Fei, X., Sharma, S., Mohammad, A., Goli, V. S. N. S., Wang, J. J., Li, D., & etal. (2021). Microplastics in soils: An environmental geotechnics perspective. Environmental Geotechnics, 8, 586–618. https://doi.org/10.1680/jenge.20.00179
O’Kelly, B. C., Pantos, O., Weaver, L., Sarris, T. S., Goli, V. S. N. S., Mohammad, A., Singh, P., & Singh, D. N. (2022). Fate and impact of nano/microplastic in the geoenvironment—ecotoxicological perspective. Environmental Geotechnics, 11(4), 293-306. https://doi.org/10.1680/jenge.22.00053
Ouda, M., Banat, F., Hasan, S. W., & Karanikolos, G. N. (2023). Recent advances on nanotechnology-driven strategies for remediation of microplastics and nanoplastics from aqueous environments Journal of Water Process Engineering, 52, 103543. https://doi.org/10.1016/j.jwpe.2023.103543Get rights and content
Goh, P.S., Kang, H.S., Ismail, A.F., Khor, W.H., Quen, L.K. & Higgins. D. (2022). Nanomaterials for microplastic remediation from aquatic environment: Why nano matters? Chemosphere, 299, 134418. https://doi.org/10.1016/j.chemosphere.2022.134418
Paço, A., Jacinto, J., da Costa, J. P., Santos, P. S., Vitorino, R., Duarte, A. C., & Rocha-Santos, T. (2019). Biotechnological tools for the effective management of plastics in the environment. Critical Reviews in Environmental Science and Technology, 49(5), 410-441. https://doi.org/10.1080/10643389.2018.1548862
Park, E.-J., Han, J.-S., Park, E.-J., Seong, E., Lee, G.-H., Kim, D.-W., Son, H.-Y., Han, H.-Y., & Lee, B.-S. (2020). Repeated-oral dose toxicity of polyethylene microplastics and the possible implications on reproduction and development of the next generation. Toxicology letters, 324, 75-85. https://doi.org/10.1016/j.toxlet.2020.01.008
Pasalari, H., Farzadkia, M., Gholami, M., & Emamjomeh, M. M. (2019). Management of landfill leachate in Iran: valorization, characteristics, and environmental approaches. Environmental Chemistry Letters, 17, 335-348. https://doi.org/10.1007/s10311-018-0804-x
Pathak, G. (2023). Plastic politics: industry stakeholders and the navigation of plastic control policy in India. Environmental Politics, 32(1), 135-156. https://doi.org/10.1080/09644016.2021.2025301
Petersen, F., & Hubbart, J. A. (2021). The occurrence and transport of microplastics: the state of the science. Science of the Total Environment, 758, 143936. https://doi.org/10.1016/j.scitotenv.2020.143936
Picó, Y., & Barceló, D. (2019). Analysis and prevention of microplastics pollution in water: current perspectives and future directions. ACS omega, 4(4), 6709-6719. https://doi.org/10.1021/acsomega.9b00222
Powell, J. J., Faria, N., Thomas-McKay, E., & Pele, L. C. (2010). Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. Journal of autoimmunity, 34(3), J226-J233. https://doi.org/10.1016/j.jaut.2009.11.006
Prajapati, A., NarayanVaidya, A., & Kumar, A. R. (2022). Microplastic properties and their interaction with hydrophobic organic contaminants: a review. Environmental Science and Pollutuion Research, 29 (33), 49490–49512. https://doi.org/10.1007/s11356-022-20723-y
Qi, K., Cheng, B., Yu, J., & Ho, W. (2017). Review on the improvement of the photocatalytic and antibacterial activities of ZnO. Journal of Alloys and Compounds, 727, 792–820.
Rashid, R., Shafiq, I., Akhter, P., Iqbal, M. J., & Hussain, M. (2021). A state-of-the-art review on wastewater treatment techniques: the effectiveness of adsorption method. Environmental Science and Pollution Research, 28, 9050–9066. https://doi.org/10.1016/j.jallcom.2017.08.142
Ray, S. S., Lee, H. K., Huyen, D. T. T., Chen, S.-S., & Kwon, Y.-N. (2022). Microplastics waste in environment: A perspective on recycling issues from PPE kits and face masks during the COVID-19 pandemic. Environmental Technology & Innovation, 26, 102290. https://doi.org/10.1016/j.eti.2022.102290
Re, V. (2019). Shedding light on the invisible: addressing the potential for groundwater contamination by plastic microfibers. Hydrogeology Journal, 27(7), 2719-2727. https://doi.org/10.1007/s10040-019-01998-x
Ren, Z., Gui, X., Xu, X., Zhao, L., Qiu, H., & Cao, X. (2021). Microplastics in the soil-groundwater environment: Aging, migration, and co-transport of contaminants – A critical review. Journal of Hazardous Materials, 419, 126455. https://doi.org/10.1016/j.jhazmat.2021.126455
Rius-Ayra, O., Bouhnouf-Riahi, O., & Llorca-Isern, N. (2020). Superhydrophobic and sustainable nanostructured powdered iron for the efficient separation of oil-inwater emulsions and the capture of microplastics. ACS Applied Materials & Interfaces Journal 12, 45629–45640. https://doi.org/10.1021/acsami.0c13876
Rizvi, N. B., Sarwar, A., Waheed, S., Iqbal, Z. F., Imran, M., Javaid, A., Kim, T. H., & Khan, M. S. (2024). Nano-based remediation strategies for micro and nanoplastic pollution: A review. Journal of Contaminant Hydrology, 245, 104380. https://doi.org/10.1016/j.jconhyd.2024.104380
Salahshoor, Z., Shahbazi, A., & Maddah, S. (2021). Magnetic field–influenced nanofiltration membrane blended by CS–EDTA–mGO as multi–functionality green modifier to enhance nanofiltration performance, efficient removal of Na2SO4/Pb2+/RR195 and cyclic wastewater treatment. Chemosphere, 278, 130379.  https://doi.org/10.1016/j.chemosphere.2021.130379
Salahshoor, Z., Shahbazi, A., & Koutahzadeh, N. (2022). Developing a novel nitrogen-doped hollow porous carbon sphere (N-HPCS) blended nanofiltration membrane with superior water permeance characteristic for high saline and colored wastewaters treatment. Chemical Engineering Journal, 431, 134068. https://doi.org/10.1016/j.cej.2021.134068
Shi, J., Dong, Y., Shi, Y., Yin, T., He, W., An, T., ... & Lin, H. (2022). Groundwater antibiotics and microplastics in a drinking-water source area, northern China: Occurrence, spatial distribution, risk assessment, and correlation. Environmental Research, 210, 112855. https://doi.org/10.1016/j.envres.2022.112855
 Shruti, V. C., & Kutralam-Muniasamy, G. (2023). Blanks and bias in microplastic research: Implications for future quality assurance. Trends in Environmental Analytical Chemistry, 38, e00203. https://doi.org/10.1016/j.teac.2023.e00203
Singh, N., Khandelwal, N., Ganie, Z. A., Tiwari, E., & Darbha, G. K. (2021). Eco-friendly magnetic biochar: an effective trap for nanoplastics of varying surface functionality and size in the aqueous environment. Chemical Engineering Journal, 418, 129405. https://doi.org/10.1016/j.cej.2021.129405
Singh, S., Chakma, S., Alawa, B., Kalyanasundaram, M., & Diwan, V. (2023). Identification, characterization, and implications of microplastics in soil-A case study of Bhopal, central India. Journal of Hazardous Matereials Advances, 9, 100225. https://doi.org/10.1016/j.hazadv.2022.100225
Sophocleous, M. (2002). Interactions between groundwater and surface water: the state of the science. Hydrogeology Journal, 10, 52–67. https://doi.org/10.1007/s10040-001-0170-8
Sun, C. Z., Wang, Z. G., Chen, L. Y., & Li, F. M. (2020). Fabrication of robust and compressive chitin and graphene oxide sponges for removal of microplastics with different functional groups. Chemical Engineering Journal, 393, 124796.  https://doi.org/10.1016/j.cej.2020.12479
Tan, H., Yue, T., Xu, Y., Zhao, J., & Xing, B. (2020). Microplastics reduce lipid digestion in simulated human gastrointestinal system. Environmental science & technology, 54(19), 12285-12294.
https://doi.org/10.1021/acs.est.0c02608
Tang, K. H. D. (2021a). Interactions of microplastics with persistent organic pollutants and the ecotoxicological effects: a review. Tropical Aquatic and Soil Pollution, 1(1), 24-34. https://doi.org/10.53623/tasp.v1i1.11
Tang, Y., Zhang, S., Su, Y., Wu, D., Zhao, Y., & Xie, B. (2021b). Removal of microplastics from aqueous solutions by magnetic carbon nanotubes. Chemical Engineering Journal, 406 ,126804. https://doi.org/10.1016/j.cej.2020.126804
Thacharodi, A., Hassan, S., Meenatchi, R., Bhat, M. A., Hussain, N., Arockiaraj, J., Ngo, H. H., Sharma, A., Nguyen, H., & Pugazhendhi, A. (2024). Mitigating microplastic pollution: A critical review on the effects, remediation, and utilization strategies of microplastics. Journal of Environmental Management, 351, 119988. https://doi.org/10.1016/j.jenvman.2023.119988
Thompson, R. C., Olsen, Y., Mitchell, R. P., Davis, A., Rowland, S. J., John, A. W. G., McGonigle, D., & Russell, A. E. (2004). Lost at sea: where is all the plastic? . Science, 304, 838. https://doi.org/10.1126/science.1094559
Tu, C., Chen, T., Zhou, Q., Liu, Y., Wei, J., Waniek, J. J., & Luo, Y. (2020). Biofilm formation and its influences on the properties of microplastics as affected by exposure time and depth in the seawater. Science of the Total Environment, 734, 139237. https://doi.org/10.1016/j.scitotenv.2020.139237
Van Der Does, M., Knippertz, P., Zschenderlein, P., Harrison, R. G., & Stuut, J. B. W. (2018). The mysterious long-range transport of giant mineral dust particles. Science Advances, 4 (12), eaau2768. https://doi.org/10.1126/sciadv.aau2768
Viaroli, S., Lancia, M., & Re, V. (2022). Microplastics contamination of groundwater: Current evidence and future perspectives. A review. Science of the Total Environment, 824, 153851. https://doi.org/10.1016/j.scitotenv.2022.153851
Walker, T. R. (2021). (Micro) plastics and the UN sustainable development goals. Current Opinion in Green and Sustainable Chemistry, 30, 100497. https://doi.org/10.1016/j.cogsc.2021.100497
Wang, L., Wu, W. M., Bolan, N. S., Tsang, D. C., Li, Y., Qin, M., & Hou, D. (2021a). Environmental fate, toxicity and risk management strategies of nanoplastics in the environment: Current status and future perspectives. Journal of hazardous materials, 401, 123415. https://doi.org/10.1016/j.jhazmat.2020.123415
Wang, J., Sun, C., Huang, Q. X., Chi, Y., & Yan, J. H. (2021b). Adsorption and thermal degradation of microplastics from aqueous solutions by Mg/Zn modified magnetic biochars. Journal of Hazardous Materials, 419, 12648. https://doi.org/10.1016/j.jhazmat.2021.126486
Wanner, P. (2021). Plastic in agricultural soils-A global risk for groundwater systems and drinking water supplies?A review Chemosphere 264, 128453. https://doi.org/10.1016/j.chemosphere.2020.128453
Wu, X., Lyu, X., Li, Z., Gao, B., Zeng, X., Wu, J., & Sun, Y. (2020). Transport of polystyrene nanoplastics in natural soils: effect of soil properties, ionic strength and cation type. Sci. Total Environ., 707, 136065.  https://doi.org/10.1016/j.scitotenv.2019.136065
Xu, X., Jian, Y., Xue, Y., Hou, Q., & Wang, L. (2019). Microplastics in the wastewater treatment plants (WWTPs): occurrence and removal. Chemosphere, 235, 1089-1096. https://doi.org/10.1016/j.chemosphere.2019.06.197
Xu, Y., Chan, F. K. S., He, J., Johnson, M., Gibbins, C., Kay, P., Stanton, T., Xu, Y., Li, G., & Feng, M. (2021). A critical review of microplastic pollution in urban freshwater environments and legislative progress in China: recommendations and insights. Critical Reviews in Environmental Science and Technology, 51(22), 2637-2680. https://doi.org/10.1080/10643389.2020.1801308
Xu, J., Zuo, R., Shang, J., Wu, G., Dong, Y., Zheng, S., & etal. (2023). Nano-and micro-plastic transport in soil and groundwater environments: sources, behaviors, theories, and models. Science of the Total Environment, 904, 166641. https://doi.org/10.1016/j.scitotenv.2023.166641
Yang, L., Zhang, Y., Kang, S., Wang, Z., & Wu, C. (2021). Microplastics in freshwater sediment: a review on methods, occurrence, and sources. Science of the Total Environment, 754, 141948. https://doi.org/10.1016/j.scitotenv.2020.141948
Yao, L., Hui, L., Yang, Z., Chen, X., & Xiao, A. (2020). Freshwater microplastics pollution: detecting and visualizing emerging trends based on citespace II. Chemosphere, 245, 125627. https://doi.org/10.1016/j.chemosphere.2019.125627
Yu, X., Huang, W., Wang, Y., Wang, Y., Cao, L., Yang, Z., & Dou, S. (2022). Microplastic pollution in the environment and organisms of Xiangshan Bay, East China Sea: an area of intensive mariculture. Water research, 212, 118117. https://doi.org/10.1016/j.watres.2022.118117
Zhang, Q., Xu, E. G., Li, J., Chen, Q., Ma, L., Zeng, E. Y., & Shi, H. (2020). A review of microplastics in table salt, drinking water, and air: direct human exposure. Environmental Science and Technology, 54, 3740–3751.  https://doi.org/10.1021/acs.est.9b04535
Zhang, D., Chen, Q., Xu, T., & Yin, D. (2025). Current research status on the distribution and transport of micro(nano)plastics in hyporheic zones and groundwater. Journal of environmental sciences, 151, 387–409. https://doi.org/10.1016/j.jes.2024.03.042
Zhao, S., Zhang, Z., Chen, L., Cui, Q., Cui, Y., Song, D., & Fang, L. (2022). Review on migration, transformation and ecological impacts of microplastics in soil. Applied Soil Ecology, 176, 104486. https://doi.org/10.1016/j.apsoil.2022.104486
Zhou, G. Y., Huang, X., Xu, H., Wang, Q. G., Wang, M. J., Wang, Y. Q., Li, Q., Zhang, Y., Ye, Q., & Zhang, J. (2022). Removal of polystyrene nanoplastics from water by CuNi carbon material: the role of adsorption. Science of the Total Environment, 820, 153190. https://doi.org/10.1016/j.scitotenv.2022.153190
CAPTCHA Image