Document Type : Case Study

Authors

1 Department of Geology, Faculty of Earth Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran

2 Department of Mineral and Ground Water Resources, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran

10.22067/jwsd.v12i1.2401-1401

Abstract

The drinking water of Izeh city in northeastern Khuzestan province is supplied from limestone wells in the Nal-e-asbi Karst aquifer south of the plain, which is in direct hydrogeological communication with the alluvial aquifer. Due to nitrate pollution infiltration from the alluvial aquifer to the Karst aquifer, determining the nitrate status in the aquifer and the effect of the natural denitrification process on reducing nitrate concentration is very important. In this research, temporal changes in nitrate, ammonium, and nitrite, and spatial changes in nitrate in the urban aquifer of Izeh were investigated to determine the denitrification mechanism. Over a one-year period (December 2023 - November 2024), samples were taken from 9 wells over 6 periods. Then, nitrate isoconcentration maps were prepared, and along with temporal changes of nitrogenous species, the nitrate chemograph was interpreted. Finally, spatial zoning of denitrification and the relationship between denitrification and other hydrogeochemical parameters was analyzed using composite diagrams. The results showed that with the leaching of pollutants from the surface and chemical fertilizers applied to agricultural lands, which are mainly applied in January and February in the Izeh region, the nitrate concentration in the urban aquifer of Izeh had a sharp increasing trend from December 2023 to April 2024, but decreased throughout the aquifer from April to June 2024. Groundwater in the north of Izeh city and adjacent to Miangaran wetland, due to severe contamination with Izeh city sewage, is under reducing and severe denitrification conditions and has the lowest nitrate concentration among the water wells. Based on the denitrification zoning map, the highest and lowest constant rate of denitrification are related to the northeast and southwest of Izeh city, respectively.

Keywords

Main Subjects

علیجانی، فرشاد. (1381). هیدروژئوشیمی و آلودگی آب‏‌های زیرزمینی دشت ایذه. پایان‏‌نامه کارشناسی‌ارشد. دانشکده علوم زمین، دانشگاه شهید بهشتی. تهران، ایران.
ناصری، حمیدرضا و علیجانی، فرشاد. (1386). بررسی منابع آلاینده آب‌‏های زیرزمینی دشت ایذه، شمال شرق خوزستان. فصلنامه علوم محیطی، 4 (4)، 46-33. https://envs.sbu.ac.ir/article_96668.html
Abascal, E., Gomez-Coma, L., Ortiz, I., & Ortiz, A. (2022). Global diagnosis of nitrate pollution in groundwater and review of removal technologies. Science of The Total Environment, 810, 354-362. https://doi.org/10.1016/j.scitotenv.2021.152233
Aleku, D.L., Dähnke, K. & Pichler, T. (2024). Source, transport, and fate of nitrate in shallow groundwater in the eastern Niger Delta. Environmental Science and Pollution Research, 31, 65034–65050. https://doi.org/10.1007/s11356-024-35499-6
Amiri, H., Zare, M., & Widory, D. (2015). Nitratenitrogen and Oxygen Isotope Characterization of the Shiraz Aquifer (Iran). Procedia Earth and Planetary Science, 13, 52–55. https://doi.org/10.1016/j.proeps.2015.07.012
Amiri, V., Ali Khan, S., Sohrabi, N., & Amiri, F. (2023). Hydrogeochemical evaluation with emphasis on nitrate and fluoride in urban and rural drinking water resources in western Isfahan province, central Iran. Environmental Science and Pollution Research, 30, 108720–108740. https://doi.org/10.1007/s11356-023-30001-0
Bailey, R. T., Baù, D. A., & Gates, T. K. (2012). Estimating spatially-variable rate constants of denitrification in irrigated agricultural groundwater systems using an Ensemble Smoother. Journal of Hydrology, 468-469, 188–202. https://doi.org/10.1016/j.jhydrol.2012.08.033
Benekos, A.K., Vasiliadou, I.A., Tekerlekopoulou, A.G., Alexandropoulou, M., Pavlou, S., Katsaounis, A., & Vayenas, D.V. (2023) Groundwater denitrification using a continuous flow mode hybrid system combining a hydrogenotrophic biofilter and an electrooxidation cell. Journal of Environmental Management, 339, 654-655. https://doi.org/10.1016/j.jenvman.2023.117914
Castaldelli, G., Colombani, N., Tamburini, E., Vincenzi, F., & Mastrocicco, M. (2018). Soil type and microclimatic conditions as drivers of urea transformation kinetics in maize plots. Catena, 166, 200–208. https://doi.org/10.1016/j.catena.2018.04.009
Chakraborty, A., Suchy, M., Hubert, C.R.J., & Ryan, M.C. (2022) Vertical stratification of microbial communities and isotope geochemistry tie groundwater denitrification to sampling location within a nitrate-contaminated aquifer. Science of The Total Environment, 820, 312-325. https://doi.org/10.1016/j.scitotenv.2022.153092
Chander, S., Yadav, S., & Gupta, A. (2023). Nitrate Contamination in Groundwater of Arid and Semi-Arid Regions, Ecotoxicological Impacts, and Management Strategies. Springer, 126(9), 339-370. https://doi.org/10.1007/698_2023_1047
Green, C. T., Jurgens, B. C., Zhang, Y., Starn, J. J., Singleton, M. J., & Esser, B. K. (2016). Regional oxygen reduction and denitrification rates in groundwater from multi-model residence time distributions, San Joaquin Valley, USA. Journal of Hydrology, 543, 155–166. https://doi.org/10.1016/j.jhydrol.2016.05.018
He, X., Liu, Z., Qian, J., Zhao, W., & Liu, Y. (2016). Distribution of Nitrate in Different Aquifers in the Urban District of Zhanjiang, China. Bulletin of Environmental Contamination and Toxicology, 97(2), 279–285. https://doi.org/10.1007/s00128-016-1822-7
Hinkle, S. R., & Tesoriero, A. J. (2014). Nitrogen speciation and trends, and prediction of denitrification extent, in shallow US groundwater. Journal of Hydrology, 509, 343–353. https://doi.org/10.1016/j.jhydrol.2013.11.048
Hinshaw, S. E., Zhang, T., Harrison, J. A., & Dahlgren, R. A. (2019). Excess N2 and denitrification in hyporheic porewaters and groundwaters of the San Joaquin River, California. Water Research, 115161. https://doi.org/10.1016/j.watres.2019.115161
Hu, Y., Jin, Z., Hu, Q., Hu, J., Ni, C., Li, F. (2020). Using stable isotopes to identify nitrogen transformations and estimate denitrification in a semi-constructed wetland. Science of The Total Environment, 720, 137628. https://doi.org/10.1016/j.scitotenv.2020.137628
Jahangir, M. M. R., Fenton, O., Müller, C., Harrington, R., Johnston, P., & Richards, K. G. (2017). In situ denitrification and DNRA rates in groundwater beneath an integrated constructed wetland. Water Research, 111, 254–264. https://doi.org/10.1016/j.watres.2017.01.015
Ke, S., Chen, J., Zheng, X., & Sun, X. (2021). Reference ion method: A simple and fast method for quantitatively identifying the source of nitrate and denitrification rate in groundwater. Science of The Total Environment, 769, 144555. https://doi.org/10.1016/j.scitotenv.2020.144555
Lapworth, D.J., Boving, T.B., Kreamer, D.K., Kebede, S., & Smedley, P.L. (2022). Groundwater quality: Global threats, opportunities and realising the potential of groundwater. Science Total Environment, 811, 543-552 https://doi.org/10.1016/j.scitotenv.2021.152471
Li, R., Feng, C., Hu, W., Xi, B., Chen, N., Zhao, B., Liu, Y., Hao, C., & Pu, J. (2016). Woodchip-sulfur based heterotrophic and autotrophic denitrification (WSHAD) process for nitrate contaminated water remediation. Water Research, 89, 171-179. https://doi.org/10.1016/j.watres.2015.11.044
Li, C., Li, S.L., Yue, F.J., Liu, J., Zhong, J., Yan, Z. F., Zhang, R.-C., Wang, Z.J., & Xu, S. (2019). Identification of sources and transformations of nitrate in the Xijiang River using nitrate isotopes and Bayesian model. Science of the Total Environment, 646, 801-810. https://doi.org/10.1016/j.scitotenv.2018.07.345
Mahlknecht, J., Torres-Martínez, J.A., Kumar, M., Mora, A., Kaown, D., & Loge, F.J. (2023). Nitrate prediction in groundwater of data scarce regions: The futuristic fresh-water management outlook. Science of The Total Environment, 905, 78-93. https://doi.org/10.1016/j.scitotenv.2023.166863
Mirbagheri, S. A., Ahmadi, S., & Biglari-Joo, N. (2014). Denitrification of nitrate-contaminated groundwater in an anoxic rotating biological contactor: a case study. Desalination and Water Treatment, 57(10), 4694-4700. https://doi.org/10.1080/19443994.2014.994106
Mohseni-Bandpi, A., & Elliott, D.J. (1998). Groundwater denitrification with alternative carbon sources. (1998). Water Science and Technology, 38(6), 54-62. https://doi.org/10.1016/s0273-1223(98)00597-6
Murphy, D.J., Dillon, P., Donovan, M.O., Shalloo, L., & Ruelle, E. (2024). Nitrate leaching on Irish grassland dairy farms: A review. European Journal of Agronomy, 153, 267-279. https://doi.org/10.1016/j.eja.2023.127042
Nassery, H. R., Alijani, F., & Mirzaei, L. (2009). Environmental characterization of a karst polje: an example from Izeh polje, southwest Iran. Environmental Earth Sciences, 59(1), 99–108. https://doi.org/10.1007/s12665-009-0008-6
Nejatijahromi, Z., Nassery, H. R., Hosono, T., Nakhaei, M., Alijani, F., & Okumura, A. (2019). Groundwater nitrate contamination in an area using urban wastewaters for agricultural irrigation under arid climate condition, southeast of Tehran, Iran. Agricultural Water Management, 221, 397–414. https://doi.org/10.1016/j.agwat.2019.04.015
Ortega-Martinez, E., Toledo-Alarcon, J., Fernandez, E., Campos, J.L., Oyarzún, R., Etchebehere, C., Cardena, R., Cabezas, A., Kook, L., Bakonyi, P., Magdalena, J.A., Trably, E., Bernet, N., & Jeison, D. (2024). A review of autotrophic denitrification for groundwater remediation: A special focus on bioelectrochemical reactors. Journal of Environmental Chemical Engineering, 12(1), 132-144. https://doi.org/10.1016/j.jece.2023.111552
Pan, Y., She, D., Ding, J., Abulaiti, A., Zhao, J., Wang, Y., Liu, R., Wang, F., Shan, J., Xia, Y. (2024). Coping with groundwater pollution in high-nitrate leaching areas: The efficacy of denitrification. Environmental Research, 250, 420-433. https://doi.org/10.1016/j.envres.2024.118484
Qian, J., Wang, L., Liu, Y., Wu, B., & Wang, X. (2014). Distribution of nitrate and its implication for the contaminant source in groundwater of Huaibei Plain, Anhui Province. Geosciences Journal, 19(3), 537–545. https://doi.org/10.1007/s12303-014-0051-5
Sotoodehnia, S., Mahdavi Mazdeh, A., Banning, A., & Wohnlich, S. (2024). Evaluating heterotrophic and autotrophic denitrification rates–experiments using organics and different grades pyrites. Journal of Water Process Engineering, 65, 34-51 https://doi.org/10.1016/j.jwpe.2024.105729
WHO (World Health Organization). (2017). Guidelines for drinking-water quality.4th edition. ISBN: 978-92-4-154995-0. https://www.who.int/publications/i/item/9789241549950
Zaryab, A, Alijani F, Knoeller K, Minet E, Musavi SF, & Ostadhashemi Z. (2024). Identification of groundwater nitrate sources in an urban aquifer (Alborz Province, Iran) using a multi-parameter approach. Environmental Geochemistry and Health.;46(3), 100.234-248. https://doi.org/10.1007/s10653-024-01872-0. PMID: 38407701
Zendehbad, M., Cepuder, P., Loiskandl, W., & Stumpp, C. (2019). Source identification of nitrate contamination in the urban aquifer of Mashhad, Iran. Journal of Hydrology: Regional Studies, 25, 100618. https://doi.org/10.1016/j.ejrh.2019.100618
 
 
CAPTCHA Image