Document Type : Review Article
Author
Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
Abstract
Integrating Internet of Things (IoT) technology with traditional irrigation systems is an effective step toward advancing smart irrigation. Due to its critical role in ensuring food security and preserving global water resources, optimal water management has become a major challenge. Traditional irrigation methods in many regions lead to the waste of both water and human resources. Smart irrigation systems are designed to optimize water use and enhance agricultural productivity. In addition to reducing water consumption, these systems improve efficiency and overall agricultural performance. Various techniques have been developed to assess soil moisture and plant water stress, helping to prevent unnecessary irrigation. This study first examines different smart irrigation management methods and the tools utilized in these systems. It then compares these technologies with traditional irrigation methods and evaluates their impact on water conservation. Research findings indicate that smart irrigation systems based on soil moisture sensors, evapotranspiration, and rainfall have achieved water savings of 20% to 41.5%, 20% to 48%, and 7% to 50%, respectively, compared to traditional irrigation. Additionally, sensor-based optical systems have proven to be more effective than conventional experimental and laboratory methods in assessing plant and soil variations. Therefore, implementing smart irrigation systems in agriculture is recommended as an efficient strategy for optimizing water consumption.
Keywords
Main Subjects
https://doi.org/10.1016/j.compag.2020.105441
Abioye, E. A., Abidin, M. S. Z., Mahmud, M. S. A., Buyamin, S., AbdRahman, M. K. I., Otuoze, A. O., & Ijike, O. D. (2021). IoT-based monitoring and data-driven modelling of drip irrigation system for mustard leaf cultivation experiment. Information Processing in Agriculture, 8(2), 270-283.
https://doi.org/10.1016/j.inpa.2020.05.004
Ajith, G., Bharadwaj, C. N., Nag, T. S., & Gururaj, C. (2018). Uav aided irrigation using object detection through wireless communication technology. 2nd International Conference on Trends in Electronics and Informatics (ICOEI).IEEE. Tirunelveli, India.
Aldhaheri, L., Alshehhi, N., Manzil, I. I. J., Khalil, R. A., Javaid, S., Saeed, N., & Alouini, M. S. (2024). LoRa Communication for Agriculture 4.0: Opportunities, Challenges, and Future Directions. IEEE Internet of Things Journal, 12(2), 1380-1407.
https://doi.org/10.1109/JIOT.2024.3486369
Al-Ghobari, H. M., Mohammad, F. S., & El Marazky, M. S. (2016). Evaluating two irrigation controllers under subsurface drip irrigated tomato crop. Spanish Journal of Agricultural Research, 14(4), e1206-e1206.
https://doi.org/10.5424/sjar/2016144-8615
Ali, I., Greifeneder, F., Stamenkovic, J., Neumann, M., & Notarnicola, C. (2015). Review of machine learning approaches for biomass and soil moisture retrievals from remote sensing data. Remote Sensing, 7(12), 16398-16421.
https://doi.org/10.3390/rs71215841
Al-Naji, A., Fakhri, A. B., Gharghan, S. K., & Chahl, J. (2021). Soil color analysis based on a RGB camera and an artificial neural network towards smart irrigation: A pilot study. Heliyon, 7(1).
https://doi.org/10.1016/j.heliyon.2021.e06078
Barkunan, S. R., Bhanumathi, V., & Sethuram, J. (2019). Smart sensor for automatic drip irrigation system for paddy cultivation. Computers & Electrical Engineering, 73, 180-193.
https://doi.org/10.1016/j.compeleceng.2018.11.013
Barkunan, S. R., Bhanumathi, V., & Balakrishnan, V. (2020). Automatic irrigation system with rain fall detection in agricultural field. Measurement, 156, 107552.
https://doi.org/10.1016/j.measurement.2020.107552
Bian, J., Zhang, Z., Chen, J., Chen, H., Cui, C., Li, X., & Fu, Q. (2019). Simplified evaluation of cotton water stress using high resolution unmanned aerial vehicle thermal imagery. Remote Sensing, 11(3), 267.
https://doi.org/10.3390/rs11030267
Bodkhe, U., Tanwar, S., Parekh, K., Khanpara, P., Tyagi, S., Kumar, N., & Alazab, M. (2020). Blockchain for industry 4.0: A comprehensive review. Ieee Access, 8, 79764-79800.
doi: 10.1109/ACCESS.2020.2988579
Boursianis, A. D., Papadopoulou, M. S., Diamantoulakis, P., Liopa-Tsakalidi, A., Barouchas, P., Salahas, G., & Goudos, S. K. (2022). Internet of things (IoT) and agricultural unmanned aerial vehicles (UAVs) in smart farming: A comprehensive review. Internet of Things, 18, 100187.
https://doi.org/10.1016/j.iot.2020.100187
Cardenas-Lailhacar, B., & Dukes, M. D. (2008). Expanding disk rain sensor performance and potential irrigation water savings. Journal of Irrigation and Drainage Engineering, 134(1), 67-73.
https://doi.org/10.1061/(ASCE)0733-9437(2008)134:1(67)
Condotta, I. C., Brown-Brandl, T. M., Pitla, S. K., Stinn, J. P., & Silva-Miranda, K. O. (2020). Evaluation of low-cost depth cameras for agricultural applications. Computers and Electronics in Agriculture, 173, 105394.
https://doi.org/10.1016/j.compag.2020.105394
Davis, S., Dukes, M. D., Vyapari, S., & Miller, G. L. (2007). Evaluation and demonstration of evapotranspiration-based irrigation controllers. In World Environmental and Water Resources Congress 2007: Restoring Our Natural Habitat. 1-18. Florida, USA.
https://doi.org/10.1061/40927(243)237
Dobbs, N. A., Migliaccio, K. W., Dukes, M. D., Morgan, K. T., & Li, Y. C. (2013). Interactive irrigation tool for simulating smart irrigation technologies in lawn turf. Journal of irrigation and drainage engineering, 139(9), 747-754.
https://doi.org/10.1061/(ASCE)IR.1943-4774.0000612
Dobbs, N. A., Migliaccio, K. W., Li, Y., Dukes, M. D., & Morgan, K. T. (2014). Evaluating irrigation applied and nitrogen leached using different smart irrigation technologies on bahiagrass (Paspalum notatum). Irrigation science, 32, 193-203.
https://doi.org/10.1007/s00271-013-0421-1
Dong, H., Dong, J., Sun, S., Bai, T., Zhao, D., Yin, Y., & Wang, Y. (2024). Crop water stress detection based on UAV remote sensing systems. Agricultural Water Management, 303, 109059.
https://doi.org/10.1016/j.agwat.2024.109059
Gao, Z., Zhu, J., Huang, H., Yang, Y., & Tan, X. (2021). Ant colony optimization for UAV-based intelligent pesticide irrigation system. In 2021 IEEE 24th international conference on computer supported cooperative work in design (CSCWD) (pp. 720-726). IEEE. Dalian, China.
https://doi.org/10.1109/CSCWD49262.2021.9437825
Grabow, G. L., Ghali, I. E., Huffman, R. L., Miller, G. L., Bowman, D., & Vasanth, A. (2013). Water application efficiency and adequacy of ET-based and soil moisture–based irrigation controllers for turfgrass irrigation. Journal of irrigation and drainage engineering, 139(2), 113-123.
https://doi.org/10.1061/(ASCE)IR.1943-4774.0000528
Gu, Z., Qi, Z., Ma, L., & Yuan, S. (2017). Water stress based deficit irrigation scheduling using RZWQM2 model for maize in Colorado. In 2017 ASABE Annual International Meeting. American Society of Agricultural and Biological Engineers, St. Joseph, Michigan, USA.
Hare, D. K., Briggs, M. A., Rosenberry, D. O., Boutt, D. F., & Lane, J. W. (2015). A comparison of thermal infrared to fiber-optic distributed temperature sensing for evaluation of groundwater discharge to surface water. Journal of Hydrology, 530, 153-166.
https://doi.org/10.1016/j.jhydrol.2015.09.059
Inayah, I., Agustirandi, B., Budiman, M., Djamal, M., & Faizal, A. (2025). Experimental design: Implementation of IoT-based drip irrigation to enhance the productivity of Cilembu sweet potato (Ipomoea batatas) cultivation. Results in Engineering, 25, 103600.
https://doi.org/10.1016/j.rineng.2024.103600
Isaya, N., Kisekka, A., Migliaccio, K. W., Schaffer, B., Crane, J. H., & Dukes, M. D. (2009). Evaluation of evapotranspiration-based irrigation controllers in a tropical fruit orchard in southern Florida. American Society of Agricultural and Biological Engineers, June 21-24. 2009. Reno, Nevada.
https://doi.org/10.13031/2013.26939.
Işık, M. F., Sönmez, Y., Yılmaz, C., Özdemir, V., & Yılmaz, E. N. (2017). Precision irrigation system (PIS) using sensor network technology integrated with IOS/Android application. Applied Sciences, 7(9), 891.
https://doi.org/10.3390/app7090891
Jia, X., Huang, Y., Wang, Y., & Sun, D. (2019). Research on water and fertilizer irrigation system of tea plantation. International Journal of Distributed Sensor Networks, 15(3), 1550147719840182.
https://doi.org/10.1177/1550147719840182
Juroszek, P., & Von Tiedemann, A. (2011). Potential strategies and future requirements for plant disease management under a changing climate. Plant Pathology, 60(1), 100-112.
https://doi.org/10.1111/j.1365-3059.2010.02410.x
Khaliq, A., Comba, L., Biglia, A., Ricauda Aimonino, D., Chiaberge, M., & Gay, P. (2019). Comparison of satellite and UAV-based multispectral imagery for vineyard variability assessment. Remote Sensing, 11(4), 436.
https://doi.org/10.3390/rs11040436
Kovalenko, Y., Tindjau, R., Madilao, L. L., & Castellarin, S. D. (2021). Regulated deficit irrigation strategies affect the terpene accumulation in Gewürztraminer (Vitis vinifera L.) grapes grown in the Okanagan Valley. Food Chemistry, 341, 128172.
https://doi.org/10.1016/j.foodchem.2020.128172
Krishnan, R. S., Julie, E. G., Robinson, Y. H., Raja, S., Kumar, R., & Thong, P. H. (2020). Fuzzy logic based smart irrigation system using internet of things. Journal of Cleaner Production, 252, 119902.
https://doi.org/10.1016/j.jclepro.2019.119902
Kumar, V., Sharma, K. V., Kedam, N., Patel, A., Kate, T. R., & Rathnayake, U. (2024). A Comprehensive Review on Smart and Sustainable Agriculture Using IoT Technologies. Smart Agricultural Technology, 100487.
https://doi.org/10.1016/j.atech.2024.100487
Lakhiar, I. A., Yan, H., Zhang, C., Wang, G., He, B., Hao, B., & Rakibuzzaman, M. (2024). A review of precision irrigation water-saving technology under changing climate for enhancing water use efficiency, crop yield, and environmental footprints. Agriculture, 14(7), 1141.
https://doi.org/10.3390/agriculture14071141
Liao, R., Zhang, S., Zhang, X., Wang, M., Wu, H., & Zhangzhong, L. (2021). Development of smart irrigation systems based on real-time soil moisture data in a greenhouse: Proof of concept. Agricultural Water Management, 245, 106632.
https://doi.org/10.1016/j.agwat.2020.106632
Lloret, J., Sendra, S., Garcia, L., & Jimenez, J. M. (2021). A wireless sensor network deployment for soil moisture monitoring in precision agriculture. Sensors, 21(21), 7243.
https://doi.org/10.3390/s21217243
Marek, G. W., Evett, S., Marek, T. H., Porter, D., & Schwartz, R. C. (2023). Field evaluation of conventional and downhole TDR soil water sensors for irrigation scheduling in a clay loam soil. Applied Engineering in Agriculture, 39(5), 495-507.
https://doi.org/10.13031/aea.15574
McCready, M. S., Dukes, M. D., & Miller, G. L. (2009). Water conservation potential of smart irrigation controllers on St. Augustinegrass. Agricultural water management, 96(11), 1623-1632.
https://doi.org/10.1016/j.agwat.2009.06.007
Munir, M. S., Bajwa, I. S., & Cheema, S. M. (2019). An intelligent and secure smart watering system using fuzzy logic and blockchain. Computers & Electrical Engineering, 77, 109-119.
https://doi.org/10.1016/j.compeleceng.2019.05.006
Mwinuka, P. R., Mbilinyi, B. P., Mbungu, W. B., Mourice, S. K., Mahoo, H. F., & Schmitter, P. (2021). The feasibility of hand-held thermal and UAV-based multispectral imaging for canopy water status assessment and yield prediction of irrigated African eggplant (Solanum aethopicum L). Agricultural Water Management, 245, 106584.
https://doi.org/10.1016/j.agwat.2020.106584
Nasta, P., Schönbrodt-Stitt, S., Bogena, H., Kurtenbach, M., Ahmadian, N., Vereecken, H., & Romano, N. (2019). Integrating ground-based and remote sensing-based monitoring of near-surface soil moisture in a Mediterranean environment. In 2019 IEEE international workshop on metrology for agriculture and forestry (MetroAgriFor). 24-26 October. 2019. IEEE. Portici, Italy.
https://doi.org/10.1109/MetroAgriFor.2019.8909226
Obaideen, K., Yousef, B. A., AlMallahi, M. N., Tan, Y. C., Mahmoud, M., Jaber, H., & Ramadan, M. (2022). An overview of smart irrigation systems using IoT. Energy Nexus, 7, 100124.
https://doi.org/10.1016/j.nexus.2022.100124
Ooi, S. K., Cooley, N., Mareels, I., Dunn, G., Dassanayake, K., & Saleem, K. (2010). Automation of on-farm irrigation: horticultural case study. IFAC Proceedings Volumes, 43(26), 256-261.
https://doi.org/10.3182/20101206-3-JP-3009.00045
Panigrahi, P., Raychaudhuri, S., Thakur, A. K., Nayak, A. K., Sahu, P., & Ambast, S. K. (2019). Automatic drip irrigation scheduling effects on yield and water productivity of banana. Scientia Horticulturae, 257, 108677.
https://doi.org/10.1016/j.scienta.2019.108677Get rights and content
Potdar, R. P., Shirolkar, M. M., Verma, A. J., More, P. S., & Kulkarni, A. (2021). Determination of soil nutrients (NPK) using optical methods: a mini review. Journal of plant nutrition, 44(12), 1826-1839.
https://doi.org/10.1080/01904167.2021.1884702
Prakasam, C., Aravinth, R., Kanwar, V. S., & Nagarajan, B. (2021). Design and Development of Real-time landslide early warning system through low cost soil and rainfall sensors. Materials Today: Proceedings, 45, 5649-5654.
https://doi.org/10.1016/j.matpr.2021.02.456
Qin, A., Ning, D., Liu, Z., & Duan, A. (2021). Analysis of the accuracy of an FDR sensor in soil moisture measurement under laboratory and field conditions. Journal of Sensors, 2021(1), 6665829.
https://doi.org/10.1155/2021/6665829
Rani, A., Kumar, N., Kumar, J., & Sinha, N. K. (2022). Machine learning for soil moisture assessment. Academic Press. Amsterdam, Netherlands.
Rasin, Z., Hamzah, H., & Aras, M. S. M. (2009). Application and evaluation of high power zigbee based wireless sensor network in water irrigation control monitoring system. In 2009 IEEE Symposium on Industrial Electronics & Applications. 04-06 October. 2009. IEEE. Kuala Lumpur, Malaysia.
https://doi.org/10.1109/ISIEA.2009.5356380
Rathore, V. S., Nathawat, N. S., Bhardwaj, S., Yadav, B. M., Kumar, M., Santra, P., & Yadav, O. P. (2021). Optimization of deficit irrigation and nitrogen fertilizer management for peanut production in an arid region. Scientific reports, 11(1), 5456.
https://doi.org/10.1038/s41598-021-82968-w
Richa, A., Fizir, M., & Touil, S. (2021). Advanced monitoring of hydroponic solutions using ion-selective electrodes and the internet of things: a review. Environmental Chemistry Letters, 19(4), 3445-3463.
https://doi.org/10.1111/j.1744-7909.2007.00373.x
Román-Raya, J., Ruiz-García, I., Escobedo, P., Palma, A. J., Guirado, D., & Carvajal, M. A. (2020). Light-dependent resistors as dosimetric sensors in radiotherapy. Sensors, 20(6), 1568.
https://doi.org/10.3390/s20061568
Rutland, D. C., & Dukes, M. D. (2012). Performance of rain delay features on signal-based evapotranspiration irrigation controllers. Journal of irrigation and drainage engineering, 138(11), 978-983.
https://doi.org/10.1061/(ASCE)IR.1943-4774.0000499
Saraf, S. B., & Gawali, D. H. (2017). IoT based smart irrigation monitoring and controlling system. In 2017 2nd IEEE international conference on recent trends in electronics, information & communication technology (RTEICT). 19-20 May. 2017. IEEE. Bangalore, India.
https://doi.org/10.1109/RTEICT.2017.8256711
Seagraves, B., Trooien, T. P., Todey, D. P., Hay, C. H., Schleicher, L. C., & Persyn, R. A. (2010). Efficacy of Evapotranspiration-based Landscape Irrigation in Eastern South Dakota. In 5th National Decennial Irrigation Conference Proceedings. 5-8 December.2010. Phoenix Convention Center, Phoenix, Arizona, USA.
Simionesei, L., Ramos, T. B., Palma, J., Oliveira, A. R., & Neves, R. (2020). IrrigaSys: A web-based irrigation decision support system based on open source data and technology. Computers and Electronics in Agriculture, 178, 105822.
https://doi.org/10.1016/j.compag.2020.105822
Sudharshan, N., Karthik, A. K., Kiran, J. S., & Geetha, S. (2019). Renewable energy based smart irrigation system. Procedia Computer Science, 165, 615-623.
https://doi.org/10.1016/j.procs.2020.01.055
Talaviya, T., Shah, D., Patel, N., Yagnik, H., & Shah, M. (2020). Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artificial Intelligence in Agriculture, 4, 58-73.
https://doi.org/10.1016/j.aiia.2020.04.002
Tang, P., Liang, Q., Li, H., & Pang, Y. (2024). Application of Internet-of-Things Wireless Communication Technology in Agricultural Irrigation Management: A Review. Sustainability, 16(9), 3575.
https://doi.org/10.3390/su16093575
Touil, S., Richa, A., Fizir, M., Argente García, J. E., & Skarmeta Gomez, A. F. (2022). A review on smart irrigation management strategies and their effect on water savings and crop yield. Irrigation and Drainage, 71(5), 1396-1416.
https://doi.org/10.1002/ird.2735
Wang, J., Wang, Y., Li, Z., Li, H., & Yang, H. (2020). A combined framework based on data preprocessing, neural networks and multi-tracker optimizer for wind speed prediction. Sustainable Energy Technologies and Assessments, 40, 100757.
https://doi.org/10.1016/j.seta.2020.100757
Wang, Z., Wang, L., Huang, C., Zhang, Z., & Luo, X. (2021). Soil-moisture-sensor-based automated soil water content cycle classification with a hybrid symbolic aggregate approximation algorithm. IEEE internet of things journal, 8(18), 14003-14012.
https://doi.org/10.1109/JIOT.2021.3068379
Yang, C. Y., Yang, M. D., Tseng, W. C., Hsu, Y. C., Li, G. S., Lai, M. H., & Lu, H. Y. (2020). Assessment of rice developmental stage using time series UAV imagery for variable irrigation management. Sensors, 20(18), 5354.
https://doi.org/10.3390/s20185354
Zeitoun, R., Vandergeest, M., Vasava, H. B., Machado, P. V. F., Jordan, S., Parkin, G., & Biswas, A. (2021). In-situ estimation of soil water retention curve in silt loam and loamy sand soils at different soil depths. Sensors, 21(2), 447.
https://doi.org/10.3390/s21020447
Zhang, X., Zhang, J., Li, L., Zhang, Y., & Yang, G. (2017). Monitoring citrus soil moisture and nutrients using an IoT based system. Sensors, 17(3), 447.
https://doi.org/10.3390/s17030447
Send comment about this article