مقایسه عملکرد دو مدل هیدرولوژی MISDc و HBV در شبیه‏سازی رواناب حوضه آبخیز کاکارضا

نوع مقاله : پژوهشی کاربردی

نویسندگان

دانشگاه لرستان، ایران

چکیده

مدل‏های هیدرولوژی ابزار مفیدی در تحقیقات هیدرولوژی، آزمایش فرضیه‏‌های تحقیق و درک فرآیندهای هیدرولوژی، طراحی و ارزیابی و تخصیص منابع آب (ارزیابی سیلاب دشت‏ها و حفاظت اکوسیستم‌‏ها) به‏‌شمار می‌‏روند. مدل‌‏های هیدرولوژی نمایش ساده شده سیستم واقعی هیدرولوژی هستند و به مطالعه کارکرد حوضه در واکنش به ورودی‏های گوناگون و فهم بهتر از فرآیندهای هیدرولوژی کمک می‌‏کنند. باتوجه‏‌به تنوع مدل‌‏های هیدرولوژی انتخاب هر مدل برای هر کار دشوار است. بنابراین نیاز است، ارزیابی مقایسه‌ای بین مدل‏‌ها برای مشخص کردن توانایی و قابلیت هر مدل در منطقه مطالعاتی انجام گیرد. در این مقاله از دو مدل نیمه توزیعی MISDc و HBV برای شبیه‌‏‏سازی جریان حوضه آبخیز کاکارضا استفاده شده است. دوره مشترک شبیه‏‌سازی این دو مدل در بازه زمانی 9 ساله (2010-2002) انتخاب شد. دقت نتایج حاصل از مدل‏ها با استفاده از معیارهای نش-ساتکلیف و ضریب تعیین ارزیابی شد. مقادیر به‏‌دست آمده نش-ساتکلیف و ضریب تعیین برای مدل MISDc به ‏ترتیب 0/83 و 0/84 و برای مدلHBV به‏ ترتیب 0/79 و 0/80 برای دوره واسنجی 2008-2002 و برای مدل MISDc به ‏ترتیب 0/88 و 0/89، برای مدلHBV به‌‏ترتیب 0/72 و0/73 برای دوره اعتبارسنجی 2010-2009 می‏باشد، که بیانگر عملکرد بهتر مدل MISDc در شبیه‌‏سازی جریان روزانه در منطقه مورد مطالعه می‌‏باشد. نتایج حاصل نشان می‌‏دهد مدل MISDc بهتر از مدل HBV عمل کرده است و پیشنهاد می‏‌شود در مطالعات هیدرولوژی منطقه از این مدل استفاده شود.

کلیدواژه‌ها

موضوعات


امیری، ع.، زینی وند، ح.، طهماسبی‌پور ن. و حقی‌زاده. ع. 1397. بررسی کارایی مدل MISDc در شبیه‏سازی رواناب حوضه آبخیز کشکان افرینه. نشریه سامانه‏های سطوح آبگیر باران، 6(19): 53-62
هاونگی، م. و مساح بوانی. ع.ر. 1393. مقایسه عملکرد دو مدل هیدرولوژی IHACRES و HBV light در شبیه‏سازی حوضه دز. دهمین همایش ملی علوم و مهندسی آبخیزداری (آبخیزداری پایدار). دانشگاه بیرجند، بیرجند
یعقوبی، م. و مساح بوانی. ع.ر. 1393. تحلیل حساسیت و مقایسه عملکرد سه مدل مفهومی HBV، IHACRCE و HEC-HNS در شبیه‏سازی بارش-رواناب پیوسته در حوضه‏های نیمه خشک (بررسی موردی: حوضه اعظم هرات-یزد). مجله فیزیک زمین و فضا، 40(2): 153-172.
Abebe N., Ogden F.L. and Pradhan N.R. 2010. Sensitivity and uncertainty analysis of the conceptual HBV rainfall–runoff model: Implications for parameter estimation, Journal of Hydrology, 389: 301-310.
Agha kouchak N. and HBIB E. 2012. An educational model for ensemble streamflow simulation and uncertainty analysis .hydrology and Earth system sciences, 17: 445-452
Alessio C., Daniele M., Christian M., Stefania C. and Brocca L. 2019. Combining a rainfall–runoff model and a regionalization approach for flood and water resource assessment in the western Po Valley, Italy, Hydrological Sciences Journal, 65(3): 348-370.
Barbetta S., Coccia G. Moramarco T. Brocca L. and Todini E. 2017. The multi temporal/multi-model approach to predictive uncertainty assessment in real-time flood forecasting, Journal of Hydrology, 551: 555-576.
Bashar K. 2012. Comparative Performance of Soil Moisture Accounting Approach in Continuous Hydrologic Simulation of the Blue Nile. Nile Basin Water Science & Engineering Journal, 5: 2-10.
Bergstrom S. 1976. Development and application of a conceptual runoff model for Scandinavian catchments, Publisher Department of Water Resources Engineering, Lund Institute of Technology, University of Lund.
Brocca L, Melone F, Moramarco T. 2008. On the estimation of antecedent wetness conditions in rainfall-runoff modelling. Hydrological Processes, 22(5): 629–642.
Brocca L. Melone F. Moramarco T. Singh VP. 2009. Assimilation of observed soil moisture data in storm rainfall-runoff data. Journal of Hydrologic Engineering ASCE, 14(2): 153–165.
Brocca L., Camici S. Tarpanelli A. Melone F. and Moramarco. T. 2011. Analysis of climate change effects on floods frequency through a continuous hydrological modelling. In: Climate Change and its Effects on Water Resources. Springer, Dordrecht, the Netherlands.
Brocca., L. Melone F. Moramarco T. Penna D. Borga M. Matgen P. Gumuzzio A. Martinez-Fernández J. and Wagner W. 2013 Detecting threshold hydrological response through satellite soil moisture data. Die Bodenkultur, 64 (3–4): 7–12.
Camici S., Ciabatta L., Massari C. and Brocca L. 2018. How reliable are satellite precipitation estimates for driving hydrological models: a verification study over the mediterranean area, Journal of Hydrology, 563: 950-961.
Chow V.T, Maidment D.R. and Mays L.W. 1988. Applied hydrology, McGrawHill. New York.
Corradini C. Melone F. and Ubertini L. 1995. A semi-distributed model for direct runoff estimate. In Applied Simulation and Modelling, Hamza MH (ed). IASTED ACTA Press: Anahheim (CA): 541– 545
Corradini C., Morbidelli R., Saltalippi C. and Melone F. 2002. An adaptive model for flood forecasting on medium size basins. In Applied Simulation and Modelling, Ubertini L (ed). IASTE Acta Press: Anaheim (CA): 555–559.
Doorenbos J. and Pruitt W.O. 1997. Background and development of methods to predict reference crop evapotranspiration (ETo). In FAO-ID-24, Appendix II.
Famiglietti J.S. and Wood E.F. 1994. Multiscale modeling of spatially variable water and energy balance processes. Water Resour. Res, 11: 3061–3078.
Gupta V.K., Waymire E. and Wang C.T. 1980. A representation of an instantaneous unit hydrograph from geomorphology. J. Water Resources Manage, 16(5): 855–862.
Hashim Isam J., Hamideh K. and Ranjan S. 2020. Comparative study of conceptual versus distributed hydrologic modelling to evaluate the impact of climate change on future runoff in unregulated catchments, Journal of Water andClimate Change, 11(2): 341–366.
Karlinger M.R. and Troutman B.M. 1985. An assessment of the instantaneous unit hydrograph derived from the theory of topologically random networks. Water Resour. Res, 21: 1693–1702.
Lorrai, M. and H.M. Sechi. 1995. Neural Nets for Modeling Rainfall- Runoff Transformation. Water Resources Management, 9: 299-313.
Melone F., Neri N., Morbidelli R. and Saltalippi C. 2001. A conceptual model for flood prediction inbasins of moderate size. In Applied Simulation and Modelling, Hamza MH (ed). IASTED Acta Press: Anaheim, (CA): 461–466.
Mengistu K.T. 2009. Watershed hydrological response to change in land use and land cover and management practices at hare watershed ,Ethiopia.
Normand S., Konz M. and Merz J. 2010 . Anapplication of the HBV model to the Tamor Basin in Eastern Nepal. Journal of Hydrology and meteorology, 7(1): 49-58.
Schaefli B. and Gupta H.V. 2007. Do Nash values have value? Hydrological Processes, 21(15): 2075-2080
Schreider sy ,smith DI and Jokeman AJ. 2000. climate change impacts on urban flooding. Climate change, 47: 91-115.
Siebert J. and Vis M. J. P. 2012. Teachinghydrological modeling with a userfriendly catchment runoff-model software package, Earth Syst. Sci, 16: 3315-3325.
Smith D.R., King K.W., Johnson L., Francesconi W., Richards P., Baker D., Sharpley A.N. 2015. Surface runoff and tile drainage transport of phosphorus in the midwestern united st. Schreider sy ,smith DI and Jokeman AJ. 2000. climate change impacts on urban flooding. Climate change. Jornal of Environmental Quality, 47: 91-115.
Klaus V. Maik H. Axel B. and Deborah L. 2018. Hydrological model parameter (in) stability–“crash testing” the HBV model under contrasting flood seasonality conditions. Journal Hydrological Sciences Journal, 63(7): 1-17.
CAPTCHA Image