مروری بر فناوری‏‌های مورد استفاده جهت پالایش آب در سیستم‌‏های آبزی‏‌پروری با تأکید بر الگوی توسعه پایدار در ایران

نوع مقاله : مروری

نویسندگان

1 دانشجوی دکترا، گروه شیلات، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران

2 دانشیار، گروه شیلات، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران

3 مربی پژوهشی، پژوهشکده آبزی‏پروری آب‏های داخلی، موسسه تحقیقات علوم شیلاتی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، بندر انزلی، ایران

چکیده

یکی از محدودیت‌های اصلی در مسیر توسعه صنعت آبزی‌‏پروری در ایران، دسترسی به آب شیرین با کیفیت مطلوب است. این امر سزاور استفاده از فناوری‌‏های مناسب برای تصفیه پساب‏‌های آبزی‏‌پروری است. مطالعه حاضر به بررسی فناوری‏‌های پرورشی به‏‌منظور صرفه‌‏جویی در مصرف آب در سیستم‌‏های آبزی‏‌پروری ایران با تکیه بر الگوی توسعه پایدار پرداخته است. در این تحقیق، نوآوری‏‌های ایجاد شده در تصفیه پساب‏‌های آبزی‏‌پروری در سیستم‏‌های پرورشی مداربسته، آکواپونیک و سیستم‏‌های یکپارچه چندمنظوره (IMTA) مورد بحث قرار گرفته است. سیستم آبزی‏‌پروری مداربسته (RAS) که پساب را با حذف آلاینده‏‌های سمی و بازیافت آب، پالایش می‏‌کند، تنها به 10 درصد از حجم کل آب شیرین برای تولید ماهی نیاز دارد. ازاین‏رو، این سیستم به صرفه‌‏جویی آب کمک می‏‌کند. اما بااین‏‌حال محدودیت‌هایی دارد، از جمله مهمترین آن‏ها تجمع نیترات در سیستم، هزینه اقتصادی زیاد و مدیریت دشوار آن می‌‏باشد که با تبدیل مواد مغذی حاصل از پساب آبزی‏پروری به زیست‌‏توده جلبکی می‌‏توان بر این محدودیت‏‌ها پیروز شد. علاوه‏‌بر سیستم‌‏های آبزی‏‌پروری مداربسته، آکواپونیک یک سیستم تولید مواد غذایی است که شیوه‌‏های مرسوم آبزی‏‌پروری و سیستم مداربسته را با هم ترکیب می‏‌کند. این روش شامل پرورش آبزیان و کشت گیاهان می‏‌باشد که به نوعی پیوند فعالیت‏‌های آبزی‏‌پروری-کشاورزی را نشان می‌‏دهد. آبزی‌‏پروری یکپارچه چندمنظوره (IMTA) شامل استفاده از ارگانیسم‌‏های هم‏زیست در سیستم‎‌‏های پرورشی می‌‏باشد که باعث بهینه‌‏سازی تعادل مواد مغذی و پالایش پساب فراهم شده از فعالیت‏‌های آبزی‏‌پروری می‏‌شود. این روش ترکیبی از سطوح تغذیه‏‌ای مختلف را نشان می‏‌دهد، ازاین‏رو، پساب‏‌های حاوی مواد آلی و معدنی توسط موجودات مختلف مورد استفاده قرار می‌‏گیرند.

کلیدواژه‌ها

موضوعات


خدایی، ع.ا. 1395. رتبه هفدهم ایران در صنعت آبزی‏پروری جهان/ صنعت آبزی‏‌پروری ایران در رتبه نخست خاورمیانه. https://mana.ir (10 مرداد ماه، 1401)
رادخواه ع. ر.، ایگدری س. و صادقی‏نژاد ماسوله، ا. 1399. بررسی خواص ضد‌ میکروبی نانو ذرات نقره (AgNPs) به‏‌منظور کنترل بیماری‌ها و مدیریت بهداشت در سیستم‌های آبزی‌پروری. نشریه آبزیان زینتی، 7(۱): 7-15.
رادخواه، ع. ر.، ایگدری، س. و صادقی‏‌نژاد ماسوله، ا. 1400. مروری بر فیلتراسیون غشایی و بررسی کارایی آن در بهبود کیفیت آب در سیستم‌‏های آبزی‌‏پروری مدار بسته (RAS). نشریه آب و توسعه پایدار، 8(3): 81-88.
رادخواه، ع.ر. و صادقی‏‌نژاد ماسوله، ا. 1400. بررسی تأثیر عوامل فیزیکوشیمیایی آب بر زیست‏‌فراهمی، میزان سمیت و سطح اثرگذاری نانوذرات فلزی در اکوسیستم‏‌های آبزی. نشریه آب و توسعه پایدار، 8(2): 71-90.
صالحی، ح. 1397. پیشرفت‌های صنعت شیلات ایران پس از انقلاب اسلامی. وزارت جهاد کشاورزی. https://www.maj.ir/page-Print/FA/0/printskin-dorsaetoolsenews/106641 (15 بهمن ماه، 1397)
علیزاده، ر. 1401. چگونه نسبت آمونیوم به نیترات روی گیاهان تأثیر می‏گذارد؟ تجارت سبز آبان. https://abanagri.com (6 مرداد ماه، 1401)
مرکز آمار ایران. 1401. تعداد مزارع تکثیر و پرورش آبزیان خوراکی کشور در سال ١٤٠٠. https://www.amar.org.ir (28 تیر ماه، 1401)
Abdel-Raouf N., Al-Homaidan A. A. and Ibraheem I.B.M. 2012. Microalgae and wastewater treatment. Saudi Journal of Biological Sciences, 19(3): 257-275. 
Abu-Zeid M.A. 1998. Water and sustainable development: the vision for world water, life and the environment. Water Policy, 1(1): 9-19. 
Alexander K.A., Angel D., Freeman S., Israel D., Johansen J. and Kletou D. 2016. Improving sustainability of aquaculture in Europe: Stakeholder dialogues on Integrated Multi-Trophic Aquaculture (IMTA). Environmental Science and Policy, 55: 96-106. 
Alghazwi M., Smid S., Karpiniec S. and Zhang W. 2019. Comparative study on neuroprotective activities of fucoidans from Fucus vesiculosus and Undaria pinnatifida. International Journal of Biological Macromolecules, 122: 255-264. 
Allen P.J. and Steeby J.A. 2011. Aquaculture: Challenges and Promise. Nature Education Knowledge, 3(10): 5-12.
Aquaculture ID. 2022. Recirculating aquaculture system. Aquaculture, 1(1): 6-16.
AWWA A. 2002. Nitrification. U.S. Environmental Protection Agency Office of Ground Water and Drinking Water Standards and Risk Management Division 1200 Pennsylvania Ave., NW Washington DC 20004. Economic and Engineering Services, 6: 70-100.
Banrie A. 2013. Algal toxins in pond aquaculture. The Fish Site, 1: 2-12.
Boudsocq S., Niboyet A., Lata J.C., Raynaud X., Loeuille N., Mathieu J., Blouin M., Abbadie L. and Barot S. 2012. Plant preference for ammonium versus nitrate: a neglected determinant of ecosystem functioning?. The American Naturalist, 180(1): 60-69.
Branyikova I., Prochazkova G., Potocar T., Jezkova Z. and Branyik T. 2018. Harvesting of Microalgae by Flocculation. Fermentation, 4(4): 93-107. 
Brown J., Glenn E., Fitzsimmons K.M. and Smith S. 1999. Halophytes for the treatment of saline aquaculture effluent. Aquaculture, 75(3): 255-268. 
Buhmann A. and Papenbrock J. 2013. Biofiltering of aquaculture effluents by halophytic plants: Basic principles, current uses and future perspectives. Environmental and Experimental Botany, 92: 122-133. 
Burge C.A., Closek C.J., Friedman C.S., Groner M.L., Jenkins C.M., Shore-Maggio A. and Welsh J.E. 2016. The Use of Filter-feeders to Manage Disease in a Changing World, Integrative and Comparative Biology, 56(4): 573-587. 
Califano G., Kwantes M., Abreu M.H., Costa R. and Wichard T. 2020. Cultivating the Macroalgal Holobiont: Effects of Integrated Multi-Trophic Aquaculture on the Microbiome of Ulva rigida (Chlorophyta). Frontiers in Marine Science, 12: 3-20. 
Chopin T. 2006. Integrated multi-trophic aquaculture. What it is and why you should care and don’t confuse it with polyculture. North Aquaculture, 12(4): 4-12.
Chopin T., Troell M., Reid G.K., Knowler D., Robinson S.M.C., Neori A., Buschmann A.H. and Pang S. 2010. Integrated multi-trophic aquaculture. Global Sea Food, 5: 1-14.
Chopin T. 2013. Aquaculture, Integrated Multi-Trophic (IMTA). In book: Encyclopedia of Sustainability Science and Technology. Chapter: Aquaculture, Integrated Multi-Trophic (IMTA). Springer Publishing, Volume 1. 1st Edition. Amsterdam, Netherlands.
Correia M., Azevedo I.C., Peres H., Magalhães R., Oliva-Teles A., Ribeiro Almeida C.M. and Guimarães L. 2020. Integrated Multi-Trophic Aquaculture: A laboratory and hands-on experimental activity to promote environmental sustainability awareness and value of aquaculture products. Frontiers in Marine Science, 12: 150-170.
Dauda A.B. and Akinwole A.O. 2014. Interrelationships among water quality parameters in recirculating aquaculture system. NJRED, 8(4): 20-25. 
Dauda A.B., Ajadi A., SusanTola-Fabunmi A.S. and Akinwole A.O. 2019. Waste production in aquaculture: Sources, components and managements in different culture systems. Aquaculture and Fisheries, 4(3): 81-88. 
Dunwoody R.K. 2013. Aquaponics and hydroponics: the effects of nutrient source and hydroponic subsystem design on sweet basil production. Biology and Agriculture, 2: 20-220.
Dume B., Hanc A., Svehla P., Míchal P., Chane A.D. and Nigussie A. 2021. Carbon dioxide and methane emissions during the composting and vermicomposting of sewage sludge under the effect of different proportions of straw pellets. Atmosphere, 12(11): 1380-1391. 
Ekins P. and Zenghelis D. 2021. The costs and benefits of environmental sustainability. Sustainability Science, 16: 949–965. 
Elena-Suzana B-D., Michiu D., Pop C.R., Rotar A.M., Tofana M., Pop O.L., Socaci S.A. and Farcas A.C. 2020. Macroalgae—A Sustainable Source of Chemical Compounds with Biological Activities. Nutrients, 12(10): 30-85. 
FAO. 2020. The State of World Fisheries and Aquaculture 2020: Sustainability in action. FAO Publishing. 1st Edition. Rome, Italy. 
FAO. 2021. Food and Agriculture Organization: World review of fisheries and aquaculture. Fisheries Resources: Trends in Production, Utilization and Trade. FAO Publishing. 1st Edition. Rome, Italy. 
FAO. 2022. Food and Agriculture Organization of the United Nations (FAO): Aquaculture, FAO Publishing. 3st Edition. Rome, Italy.
Graber A. and Junge R. 2009. Aquaponic systems: Nutrient recycling from fish wastewater by vegetable production. Desalination, 246: 147–156.
Growing Passion. 2022. Aquaponics: From fish poop to plant roots. EcoLife Conservation, 1: 1-12.
Guerrero S. and Cremades J. 2012. Integrated Multi-Trophic Aquaculture (IMTA): A sustainable, pioneering alternative for marine cultures in Galicia. HAL Archives, 1(1): 10-111. 
Hofbauer W.K. 2021. Toxic or otherwise harmful algae and the built environment. Toxins (Basel), 13(7): 465. DOI: 10.3390/toxins13070465
Hudnell H.K. 2008. Cyanobacterial harmful algal blooms: State of the science and research needs. Springer International Publishing, 1st Edition. New York, USA.
IFAS. 2022. Center for Aquatic and Invasive Plants: Eichhornia crassipes (Water hyacinth). Plants, 2: 5-15.
IISD. 2022. International Institute for Sustainable Development (IISD). Sustainable Development, 1: 3-16.
Jardineria O. 2022. Helecho de agua (Azolla filiculoides). Plant Biology, 1: 5-12.
Jusoh A., Nasir N.M., Yunos F.H.M., Jusoh H.H.W. and Lam S. 2020. Green technology in treating aquaculture wastewater. AIP Conference Proceedings, 2197: 1-13.
Kerrigan D. and Suckling C. 2018. A meta-analysis of integrated multi-trophic aquaculture: Extractive species growth is most successful within close proximity to open-water fish farms. Reviews in Aquaculture, 10(3): 560-572. 
Khanjani M.H., Zahedi S. and Mohammadi A.R. 2022. Integrated multitrophic aquaculture (IMTA) as an environmentally friendly system for sustainable aquaculture: functionality, species, and application of biofloc technology (BFT). Environmental Science and Pollution Research, 9(2): 1-15. 
Kim D-Y., Shinde S.K., Kadam A.A., Saratale R.G., Saratale G.D., Kumar M., Syed A., Bahkali A.H. and Ghodake G.S. 2022. Advantage of species diversification to facilitate sustainable development of aquaculture sector. Biology, 11(3): 368-380. 
Kongkeo H. 2001. Current status and development trends of aquaculture in the Asian Region. Technical Proceedings of the Conference on Aquaculture in the Third Millennium. 1st Edition. Bangkok, Thailand.
Latour Marliac. 2022. Pistia Stratiotes (Water Lettuce). Plants, 2(1): 4-10.
Lin Y.F., Jing S.R., Lee D.Y. and Wang T.W. 2002. Nutrient removal from aquaculture wastewater using a constructed wetlands system. Aquaculture, 209: 169-184.
Maiga Y., von Sperling M. and Mihelcic J. 2017. Constructed wetlands. Michigan State University Publishing. 1st Edition. New York, USA.
Martinez-Espineira R., Chopin T., Robinson S., Noce A., Knowler D. and Yip W. 2015. Estimating the biomitigation benefits of integrated multi-trophic aquaculture: a contingent behavior analysis. Aquaculture, 437: 182-194. 
Martinez-Porchas M. and Martinez-Cordova L.R. 2012. World aquaculture: Environmental impacts and troubleshooting alternatives. The Scientific World Journal, 38(3): 10-22. 
Martins C.I.M., Eding E.H., Verdegem M.C.J., Heinsbroek L.T.N., Schneider O., Blancheton J.P., Rogued Orbcaste E. and Verreth J.A.J. 2010. New developments in recirculating aquaculture systems in Europe: a perspective on environmental sustainability. Aquacultural Engineering, 43: 83-93. 
Matter I.A., Bui V.K.H., Jung M., Seo J.Y., Kim Y-E., Lee Y-C. and Oh Y-K. 2019. Flocculation harvesting techniques for microalgae: A review. Applied Sciences, 9(15): 3069-3076. 
Marsh J. 2020. Top pros and cons of aquaponics. Environment, 1(1): 2-11.
Mohebi Z. and Nazari M. 2021. Phytoremediation of wastewater using aquatic plants, A review. Journal of Applied Research in Water and Wastewater, 8(1): 50-58.
Moloantoa K.M., Khetsha Z.P., van Heerden E., Castillo J.C. and Cason E.D. 2022. Nitrate water contamination from industrial activities and complete denitrification as a remediation option. Water, 14(5):799. 
Nagappan S., Das P., Abdul Quadir M., Thaher M., Khana S., Mahata C., Al-Jabri A., Vatland A.K. and Kumar G. 2021. Potential of microalgae as a sustainable feed ingredient for aquaculture. Journal of Biotechnology, 341: 1-20. 
Najjar Y.S.H. and Abu-Shamleh A. 2020. Harvesting of microalgae by centrifugation for biodiesel production: A review. Algal Research, 51: 102046. 
NFDB A. 2022. Recent trends in aquaculture recirculatory aquaculture system (RAS). National Fisheries Development Board, 1: 1-12.
Nqombolo A., Mpupa A., Moutloali R. M. and Nomngongo P. 2018. Wastewater treatment using membrane technology: Wastewater and water quality. IntechOpen, 4: 20-50.
Olasehinde T.A., Olaniran A.O. and Okoh A.I. 2019. Macroalgae as a Valuable Source of Naturally Occurring Bioactive Compounds for the Treatment of Alzheimer's Disease. Marine drugs, 17(11): 609-620. 
Omondi D.O. and Navalia A.C. 2020. Constructed wetlands in wastewater treatment and challenges of emerging resistant genes filtration and reloading. IntechOpen, 5: 10-42.
Pagels F., Guedes A.C., Amaro H.M., Kijjoa A. and Vasconcelos V. 2019. Phycobiliproteins from Cyanobacteria: Chemistry and biotechno- logical applications. Biotechnology Advances, 37: 422-443.
Pelley J. 2016. Taming toxic algae blooms. ACS Central Science, 2(5): 270273. DOI: 10.1021/acscentsci.6b00129
Pham-Huy L.A., He H. and Pham-Huy C. 2008. Free radicals, antioxidants in disease and health. International Journal of Biomedical Science, 4(2): 89-96.
Poli M.A., Chamorro E., Marco L., Lorenzo A., Pinheiro I., Aranh M., Walter M., Seiffert Q. and Vieira F.N. 2019. Integrated multitrophic aquaculture applied to shrimp rearing in a biofloc system. Aquaculture, 511: 1-20. 
Preena P.G., Kumar V.G.R. and Singh I.S.B. 2021. Nitrification and denitrification in recirculating aquaculture systems: the processes and players. Reviews in Aquaculture, 13(4): 2053-2075. 
Rakocy J.E. 2012. Aquaponics-Integrating fish and plant culture: Aquaculture Production Systems. Wiley-Blackwell, 10(3): 344–386.
Ramli N.M., Verreth J., Yusoff F.M., Nurulhuda K., Nagao N. and Verdegem M. 2020. Integration of algae to improve nitrogenous waste management in recirculating aquaculture systems: A review. Frontiers in Bioengineering and Biotechnology, 8: 1004. DOI: 10.3389/fbioe.2020.01004
Rosa J., Lemos M.F.L., Crespo D., Nunes M. and Letson S. 2020. Integrated multitrophic aquaculture systems – Potential risks for food safety. Trends in Food Science and Technology, 96: 79-90. 
Ravindranath K. 2017. Aquaponics – an integrated fish and plant production system for urban, suburban and rural settings. NFDB Newsletter Matsya Bharat, 8(5): 5-15.
Sigalevich P., Baev M.V., Teske A. and Cohen Y. 2000. Sulfate reduction and possible aerobic metabolism of the sulfate-reducing bacterium Desulfovibrio oxyclinae in a chemostat coculture with Marinobacter sp. Strain MB under exposure to increasing oxygen concentrations. Applied and Environmental Microbiology, 66(11): 5013-5018. 
Stathopoulou P., Berillis P., Levizou E., Sakellariou-Makrantonaki M., Kormas A.K., Aggelaki A., Kapsis P., Vlahos N. and Mente E. 2018. Aquaponics: a mutually beneficial relationship of fish, plants and bacteria. 3rd International Congress on Applied Ichthyology and Aquatic Environment. Volos, Greece.
Strand Ø., Jansen H.M., Jiang Z. and Robinson S.M.C. 2019. Perspectives on bivalves providing regulating services in integrated multi-trophic aquaculture. Springer Publishing, Volume 1, 1st Edition. Amsterdam, Netherlands.
Timmons M.B. and Lorsodo T.M. 1994. Aquaculture water reuse systems, engineering design and management. Volume 1. Elsevier Publishing. 1st Edition. New York, USA.
Tom A.P., Jayakumar J.S., Biju M., Somarajan J. and Ibrahim M.A. 2021. Aquaculture wastewater treatment technologies and their sustainability: A review. Energy Nexus, 4: 22-43. 
Tossavainen M., Lahti K., Edelmann M. and Romantschuk M. 2019. Integrated utilization of microalgae cultured in aquaculture wastewater: wastewater treatment and production of valuable fatty acids and tocopherols. Journal of Applied Phycology, 31: 1753-1763. 
Travis A. 2018. Aquaponics description, advantages and disadvantages. Farming Method, 5(1): 6-16.
Tyson R.V., Treadwell D.D. and Simonne E.H. 2011. Opportunities and challenges to sustainability in aquaponic systems. Hortechnology, 21: 6-13. 
UNESCO. 2022. Sustainable Development. Available at: https://en.unesco.org/themes/education-sustainable-development/what-is-esd/sd (visited 10 May 2022)
Verdegem M.C.J., Bosma R.H. and Verreth J.A.J. 2006. Reducing water use for animal production through aquaculture. International Journal of Water Resources Development, 22(1): 101-113. 
Waller. 2001. Tank culture and recirculating systems: Environmental impacts of aquaculture. Sheffield Academic Press, Volume 1. 1st Edition. Sheffield, UK.
Wang L., Park Y., Jeon Y. and Ryu B. 2018. Bioactivities of the edible brown seaweed, Undaria pinnatifida: A review. Aquaculture, 495: 873-880. 
Yavuzcan Yildiz H., Robaina L., Pirhonen J., Mente E., Domínguez D. and Parisi G. 2017. Fish Welfare in Aquaponic Systems: Its Relation to Water Quality with an Emphasis on Feed and Faeces—A Review. Water, 9(1): 2-17. DOI: 10.3390/w9010013
Zhang J., Zhang S., Kitazawa D., Zhou J., Park S., Gao S. and Shen Y. 2019. Bio-mitigation based on integrated multi-trophic aquaculture in temperate coastal waters: practice, assessment, and challenges. Latin American Journal of Aquatic Research, 47(2): 212-223. DOI: 10.3856/vol47-issue2-fulltext-1  
Zheng C., Zhao L., Zhou X., Fu Z. and Li A. 2013. Treatment technologies for organic wastewater. IntechOpen, 4(1): 50-85.
CAPTCHA Image