استفاده از مصالح بازیافتی در ساخت بتن متخلخل به‌منظور حذف TOC از رواناب شهری

نوع مقاله : کاربردی

نویسندگان

1 دانش‌آموخته کارشناسی‌ارشد، دانشکده مهندسی عمران، آب و محیط‌زیست، دانشگاه شهید بهشتی، تهران، ایران

2 استادیار، دانشکده مهندسی عمران، آب و محیط‌زیست، دانشگاه شهید بهشتی، تهران، ایران

10.22067/jwsd.v9i1.2110.1085

چکیده

بتن متخلخل تصفیه‏‌گر به‌عنوان فناوری نوین در توسعه فضای شهری به‌منظور کنترل و تصفیه فیزیکی رواناب‌های شهری در سال‌های اخیر مورد توجه بسیاری از کشورهای صنعتی قرار گرفته است. استفاده از ترکیبات بازیافتی در ساخت بتن به‌منظور کاهش فشار بر منابع طبیعی و همچنین کاهش تولید گاز دی‌اکسیدکربن به‌منظور حفظ محیط‌زیست و توسعه پایدار چالش اساسی صنعت عمران می‌باشد. در این پژوهش جهت رسیدن به اهداف و ضرورت فوق، از دو نوع سنگ‌دانه بازیافتی سرامیک و بتنی خردشده و یک نوع سنگ‌دانه پامیس با خواص پوزلانی به‌منظور ساخت بتن متخلخل استفاده شد. 6 طرح اختلاط با اولویت نفوذپذیری بالا، مقاومت کافی و تصفیه‌پذیری مناسب طراحی شدند. بر این اساس آزمایشات خواص مکانیکی (شامل جذب، چگالی، تخلخل، نفوذپذیری و مقاومت فشاری) و تصفیه‌‏پذیری (حذف TOC) بر روی نمونه‌‌های بتنی انجام پذیرفت. نتایج مطالعات نشان داد استفاده از پامیس تا 25 درصد جایگزین با مصالح ساختمانی بازیافتی میزان تخلخل و نفوذپذیری بتن به‏‌ترتیب 13 و 43 درصد افزایش و میزان چگالی و مقاومت فشاری آن به‌‏ترتیب 12/5 و 39 درصد کاهش نسبت به نمونه شاهد داشته است. در بحث حذف آلاینده آلی TOC افزایش عملکرد 13 درصدی برای نمونه با 25 درصد جایگزینی پامیس مشاهده شده است. عملکرد فوق‌العاده طرح اختلاط حاوی سنگ‌دانه‌های پامیس در مقاومت مکانیکی و تصفیه‌‏پذیری می‌تواند رویکرد نوین در استفاده از مصالح بازیافتی در توسعه و ساخت فضای شهری به‌حساب آید.

کلیدواژه‌ها

موضوعات


Afshar N.R. and Fahmi H. 2019. Impact of climate change on water resources in Iran. International Journal of Energy and Water Resources, 3: 55-60.
Al Ghussain L. 2019. Global warming: review on driving forces and mitigation. Environmental Progress & Sustainable Energy, 38: 13-21.
AlShareedah O. and Nassiri S. 2020. Pervious concrete mixture optimization, physical, and mechanical properties and pavement design: A review. Journal of Cleaner Production, 125095.
Brattebo, B.O., Booth, D.B., 2003. Long-term stormwater quantity and quality performance of permeable pavement systems. Water research, 37: 4369-4376.
Chan Y., Luo X. and Sun W. 2000. Compressive strength and pore structure of high-performance concrete after exposure to high temperature up to 800 C. Cement and Concrete Research, 30: 247-251.
Chang J.J., Yeih W., Chung T. and Huang R. 2016. Properties of pervious concrete made with electric arc furnace slag and alkali-activated slag cement. Construction and Building Materials, 109: 34-40.
Delatte N. 2018. Concrete pavement design, construction, and performance. Crc Press.
Duan P., Hu X., Ji Z., Yang X. and Sun Z. 2018. Enhanced oxidation potential of Ti/SnO2-Cu electrode for electrochemical degradation of low-concentration ceftazidime in aqueous solution: Performance and degradation pathway. Chemosphere, 212: 594-603.
EPA. 2010. Preparing Your Drinking Water Consumer. Environmental Protection Agency, Washington DC.
Ibrahim H.A. and Razak H.A. 2016. Effect of palm oil clinker incorporation on properties of pervious concrete. Construction and Building Materials, 115: 70-77.
Liu W., Chen W., Feng Q., Peng C. and Kang P. 2016. Cost-benefit analysis of green infrastructures on community stormwater reduction and utilization: a case of Beijing, China. Environmental management, 58: 1015-1026.
Lori A.R., Hassani A. and Sedghi R. 2019. Investigating the mechanical and hydraulic characteristics of pervious concrete containing copper slag as coarse aggregate. Construction and Building Materials, 197: 130-142.
Muthu M., Santhanam M. and Kumar M. 2018. Pb removal in pervious concrete filter: effects of accelerated carbonation and hydraulic retention time. Construction and Building Materials, 174: 224-232.
Nassiri S. 2020. Development of Protocol to Maintain Winter Mobility of Different Classes of Pervious Concrete Pavement Based on Porosity. Final Report. Washington State University.
Nnadi E.O., Newman A.P., Coupe S.J. and Mbanaso F.U. 2015. Stormwater harvesting for irrigation purposes: An investigation of chemical quality of water recycled in pervious pavement system. Journal of environmental management, 147: 246-256.
Office U.S.E.P.A.T.I. and Support E.M. 1999. Field applications of in situ remediation technologies: Permeable reactive barriers. DIANE Publishing.
Pratt C., Mantle J. and Schofield P. 1989. Urban stormwater reduction and quality improvement through the use of permeable pavements. Urban discharges and receiving water quality impacts. Elsevier, 123-132.
Shabalala A.N. and Ekolu S.O. 2019. Assessment of the suitability of mine water treated with pervious concrete for irrigation use. Mine Water and the Environment, 38: 798-807.
Shabalala A.N., Ekolu S.O., Diop S. and Solomon F. 2017. Pervious concrete reactive barrier for removal of heavy metals from acid mine drainage− column study. Journal of Hazardous Materials 323: 641-653.
Shang H. and Sun Z. 2018. PAHs (naphthalene) removal from stormwater runoff by organoclay amended pervious concrete.
Visco G., Campanella L. and Nobili V. 2005. Organic carbons and TOC in waters: an overview of the international norm for its measurements. Microchemical Journal, 79: 185-191.
Wicke D., Matzinger A., Sonnenberg H., Caradot N., Schubert R.L., Dick R., Heinzmann B., Dünnbier U., von Seggern D. and Rouault P. 2021. Micropollutants in Urban Stormwater Runoff of Different Land Uses. Water, 13: 1312.
Yadollahie M. 2019. The flood in Iran: a consequence of the global warming? The international journal of occupational and environmental medicine, 10: 54.
Yoo J., Shin H. and Ji S. 2018. Evaluation of the applicability of concrete sludge for the removal of Cu, Pb, and Zn from contaminated aqueous solutions. Metals, 8: 666.
Zhang R., Kanemaru K. and Nakazawa T. 2015. Purification of river water quality using precast porous concrete products. Journal of advanced concrete technology, 13: 163-168.
Zhang Z., Zhang Y., Yan C. and Liu Y. 2017. Influence of crushing index on properties of recycled aggregates pervious concrete. Construction and Building Materials, 135: 112-118.
CAPTCHA Image