مروری بر کاربرد علم داده و یادگیری ماشین در مدیریت آب کشاورزی

نوع مقاله : فنی و ترویجی

نویسندگان

گروه مهندسی آبیاری و آبادانی، دانشکدگان کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران.

چکیده

مدیریت آب در کشاورزی از طریق فناوری‌ها و نوآوری‌های جدید قابل ارتقا است. از جمله فناوری‌های رو به رشد، علم داده و یادگیری ماشین است. علم داده یک حوزه رو به رشد در دنیای فناوری اطلاعات است که به تحلیل، استخراج اطلاعات، و فهم الگوها و روابط در داده‌های بزرگ کمک می‌کند. این حوزه در صنایع مختلف و بخصوص در زمینه‌های کشاورزی و محیط‌زیست نقش مهمی ایفا می‌کند. یکی از زمینه‌هایی که علم داده در آن تأثیر بسزایی دارد، زمینه علوم و مهندسی آب است. هدف این پژوهش ارائه یک تعریف جامع از علم داده و بررسی مطالعات انجام شده در این زمینه است. بر اساس نتایج به‌دست آمده، 10 درصد مطالعات انجام شده این حوزه در کشاورزی، به موضوع مدیریت آب اختصاص یافته‌اند. همچنین در بین کل مطالعات انجام شده در این حوزه بین سال‌های 2018 تا 2020، ایران سهم 5/62 درصدی بین این مطالعات داشته است. تمرکز پژوهشگران نیز، بیشتر در موضوعات تعیین تبخیر-تعرق گیاه، پیش‌بینی عملکرد و تعیین کیفیت آب بوده است. با این حال با توجه به نوظهور بودن این فناوری، هنوز خلاء‌های مطالعاتی در این حوزه وجود دارد که انتظار می‌رود در آینده نظر محققین به آن‌ها جلب شود. از طرف دیگر، همانند سایر فناوری‌های جدید، مشکلاتی در زمینه اجرا و پیاده‌سازی آن وجود دارد که برای حل این مشکلات، لازم است تا سیاستمداران، محققین، و کشاورزان با همکاری یکدیگر، راهکارهایی را ارائه کنند که بتوانند از مزایای علم داده به شکل بهینه استفاده کنند و در عین حال به چالش‌ها و مشکلات موجود پاسخ دهند.

کلیدواژه‌ها

موضوعات


باقری، حمید. (1401). استفاده از الگوریتم فراابتکاری کرم شب تاب در بهبود دقت طبقه‌بندی تصویر ماهواره ای، مطالعه موردی: شهر رفسنجان. سنجش از دور و سامانه اطلاعات جغرافیایی در منابع طبیعی، انتشار آنلاین 6 تیرماه 1401. doi: 10.30495/girs.2022.692233
شریفی، عبید، اصغری بیرامی، بهنام، و مختارزاده، مهدی. (1400). طبقه‌بندی تصاویر ابرطیفی با استفاده از ادغام ویژگی‌های طیفی و مکانی در شبکه‌های عصبی پیچشی. نشریه مهندسی فناوری اطلاعات مکانی، 9(2)، 27-1. doi: 10.52547/jgit.9.2.1
کاویانی، مسعود. (1401). یادگیری ماشین و یادگیری عمیق با زبان‌های پایتون و R. انتشارات دیباگران. چاپ اول. 246 صفحه. تهران، ایران.
نیکخواه، امیره. (1397). واژه نامه علم داده. انتشارات لیلاژ. چاپ اول. 142 صفحه. تهران، ایران.
Aadhar, S., & Mishra, V. (2017). High-resolution near real-time drought monitoring in South Asia. Scientific Data, 4(1), 1-14.   doi: 10.1038/sdata.2017.145
Ahmadi, A., Olyaei, M., Heydari, Z., Emami, M., Zeynolabedin, A., Ghomlaghi, A., ... & Sadegh, M. (2022). Groundwater level modeling with machine learning: a systematic review and meta-analysis. Water, 14(6), 949. doi: 10.3390/w14060949
Alibabaei, K., Gaspar, P. D., & Lima, T. M. (2021). Crop yield estimation using deep learning based on climate big data and irrigation scheduling. Energies, 14(11), 3004. doi: 10.3390/en14113004
Azari, A., Zeynoddin, M., Ebtehaj, I., Sattar, A. M., Gharabaghi, B., & Bonakdari, H. (2021). Integrated preprocessing techniques with linear stochastic approaches in groundwater level forecasting. Acta Geophysica, 69(4), 1395-1411. doi: 10.1007/s11600-021-00617-2
Benos, L., Tagarakis, A. C., Dolias, G., Berruto, R., Kateris, D., & Bochtis, D. (2021). Machine learning in agriculture: A comprehensive updated review. Sensors, 21(11), 3758. doi: 10.3390/s21113758
Bhagat, M., Kumar, D., & Kumar, D. (2019). Role of Internet of Things (IoT) in smart farming: A brief survey. 2019 Devices for Integrated Circuit (DevIC), 141-145. doi: 10.1109/DEVIC.2019.8783800
Blickensdörfer, L., Schwieder, M., Pflugmacher, D., Nendel, C., Erasmi, S., & Hostert, P. (2022). Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote sensing of environment, 269, 112831. doi: 10.1016/j.rse.2021.112831
Burra, D. D., Hildebrand, J., Giles, J., Nguyen, T., Hasiner, E., Schroeder, K., ... & Kropff, W. (2021). Digital Agriculture Profile: Viet Nam. Food and Agriculture Organisation of the United Nations. Rome, Italy.
Cedric, L. S., Adoni, W. Y. H., Aworka, R., Zoueu, J. T., Mutombo, F. K., Krichen, M., & Kimpolo, C. L. M. (2022). Crops yield prediction based on machine learning models: Case of West African countries. Smart Agricultural Technology, 2, 100049. doi: 10.1016/j.atech.2022.100049
Chang, Y. C., Huang, T. W., & Huang, N. F. (2019, September). A machine learning based smart irrigation system with LoRa P2P networks. In 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS) (pp. 1-4). IEEE. https://doi.org/10.23919/APNOMS.2019.8893034
Chapman, P., (1999). Julian Clinton (SPSS), Randy Kerber (NCR), Thomas Khabaza (SPSS), Thomas Reinartz (DaimlerChrysler), Colin Shearer (SPSS) and Rüdiger Wirth (DaimlerChrysler),". CRISP-DM 1.0. Step-by-step data mining guide. Available online: https://www.coursehero.com/file/14884931/CRISP-DM-Process-Model-User-Guide
Chen, J., Li, M., & Wang, W. (2012). Statistical uncertainty estimation using random forests and its application to drought forecast. Mathematical Problems in Engineering, 2012(1), 915053, 1-12. doi: 10.1155/2012/915053
Chen, T. H., Lee, M. H., Hsia, I. W., Hsu, C. H., Yao, M. H., & Chang, F. J. (2022). Develop a Smart Microclimate Control System for Greenhouses through System Dynamics and Machine Learning Techniques. Water, 14(23), 3941. doi: 10.3390/w14233941
Chen, Z., Zhu, Z., Jiang, H., & Sun, S. (2020). Estimating daily reference evapotranspiration based on limited meteorological data using deep learning and classical machine learning methods. Journal of Hydrology, 591, 125286. doi: 10.1016/j.jhydrol.2020.125286
Clark, M., & Tilman, D. (2017). Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environmental Research Letters, 12(6), 064016. doi: 10.1088/1748-9326/aa6cd5
Dwivedi, R. (2020). How to use the Random Forest classifier in Machine learning?. [Online]. Available: https://www.analyticssteps.com/blogs/how-use-random-forest-classifier-machine-learning. Updated: 1/18/2021.
El Bilali, A., Taleb, A. and Brouziyne, Y., 2021. Groundwater quality forecasting using machine learning algorithms for irrigation purposes. Agricultural Water Management, 245, p.106625. doi: 10.1016/j.agwat.2020.106625
FAO. (2020). The State of Food and Agriculture 2020. Overcoming water challenges in agriculture. Rome.
Fan, J., Yue, W., Wu, L., Zhang, F., Cai, H., Wang, X., ... & Xiang, Y. (2018). Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China. Agricultural and forest meteorology, 263, 225-241. doi: 10.1016/j.agrformet.2018.08.019
Feng, P., Wang, B., Li Liu, D., & Yu, Q. (2019). Machine learning-based integration of remotely-sensed drought factors can improve the estimation of agricultural drought in South-Eastern Australia. Agricultural Systems, 173, 303-316. doi: 10.1016/j.agsy.2019.03.015
Gao, H., Zhangzhong, L., Zheng, W., & Chen, G. (2023). How can agricultural water production be promoted? a review on machine learning for irrigation. Journal of Cleaner Production, 414, 137687. doi: 10.1016/j.jclepro.2023.137687
Ghassemi, B., Dujakovic, A., Żółtak, M., Immitzer, M., Atzberger, C., & Vuolo, F. (2022). Designing a European-wide crop type mapping approach based on machine learning algorithms using LUCAS field survey and Sentinel-2 data. Remote sensing, 14(3), 541. doi: 10.3390/rs14030541
 Goap, A., Sharma, D., Shukla, A. K., & Krishna, C. R. (2018). An IoT based smart irrigation management system using Machine learning and open source technologies. Computers and electronics in agriculture, 155, 41-49. doi: 10.1016/j.compag.2018.09.040
Gong, L., Yan, J., Chen, Y., An, J., He, L., Zheng, L., & Zou, Z. (2022). An IoT-based intelligent irrigation system with data fusion and a self-powered wide-area network. Journal of Industrial Information Integration, 29, 100367. doi: 10.1016/j.jii.2022.100367
Gumma, M. K., Tummala, K., Dixit, S., Collivignarelli, F., Holecz, F., Kolli, R. N., & Whitbread, A. M. (2022). Crop type identification and spatial mapping using Sentinel-2 satellite data with focus on field-level information. Geocarto International, 37(7), 1833-1849. doi: 10.1080/10106049.2020.1805029
Haghiabi, A. H., Nasrolahi, A. H., & Parsaie, A. (2018). Water quality prediction using machine learning methods. Water Quality Research Journal, 53(1), 3-13. doi: 10.2166/wqrj.2018.025
Hamrani, A., Akbarzadeh, A., & Madramootoo, C. A. (2020). Machine learning for predicting greenhouse gas emissions from agricultural soils. Science of The Total Environment, 741, 140338. doi: 10.1016/j.scitotenv.2020.140338
Hudait, M., & Patel, P. P. (2022). Crop-type mapping and acreage estimation in smallholding plots using Sentinel-2 images and machine learning algorithms: Some comparisons. The Egyptian Journal of Remote Sensing and Space Science, 25(1), 147-156. doi: 10.1016/j.ejrs.2022.01.004
IBM. (n.d.). K-Nearest Neighbors (KNN). IBM. Retrieved September 26, 2024, from https://www.ibm.com/topics/knn?mhsrc=ibmsearch_a&mhq=KNN
Jayaraman, P., Nagarajan, K. K., & Partheeban, P. (2022). A Review on Artificial intelligence Algorithms and Machine Learning to Predict the Quality of Groundwater for Irrigation Purposes. In 2022 International Conference on Data Science, Agents & Artificial Intelligence (ICDSAAI) (Vol. 1, pp. 1-8). IEEE. doi: 10.1109/ICDSAAI55433.2022.10028857
Kamienski, C., Soininen, J. P., Taumberger, M., Dantas, R., Toscano, A., Salmon Cinotti, T., ... & Torre Neto, A. (2019). Smart water management platform: IoT-based precision irrigation for agriculture. Sensors, 19(2), 276. doi: 10.3390/s19020276
Kelleher, J. D., & Tierney, B. (2018). Data science. MIT Press. Massachusetts, USA. doi: 10.7551/mitpress/11140.001.0001
Khadr, M. (2016). Forecasting of meteorological drought using Hidden Markov Model (case study: The upper Blue Nile river basin, Ethiopia). Ain Shams Engineering Journal, 7(1), 47-56. doi: 10.1016/j.asej.2015.11.005
Khosla, E., Dharavath, R., & Priya, R. (2020). Crop yield prediction using aggregated rainfall-based modular artificial neural networks and support vector regression. Environment. Development and Sustainability, 22, 5687-5708. doi: 10.1007/s10668-019-00445-x
Kotu, V., & Deshpande, B. (2018). Data science: concepts and practice. Morgan Kaufmann. Massachusetts, USA.
Kouadio, L., Deo, R. C., Byrareddy, V., Adamowski, J. F., & Mushtaq, S. (2018). Artificial intelligence approach for the prediction of Robusta coffee yield using soil fertility properties. Computers and electronics in agriculture, 155, 324-338. doi: j.compag.2018.10.014
Kranjčić, N., Medak, D., Župan, R., & Rezo, M. (2019). Machine learning methods for classification of the green infrastructure in city areas. ISPRS International Journal of Geo-Information, 8(10), 463. doi: 10.3390/ijgi8100463
Li, J., Zhou, S., & Hu, R. (2016). Hydrological drought class transition using SPI and SRI time series by loglinear regression. Water resources management, 30, 669-684. doi: 10.1007/s11269-015-1184-7
Liakos, K. G., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine learning in agriculture: A review. Sensors, 18(8), 2674. doi: 10.3390/s18082674
Lindemann, M. D. (2019). 169 awardee talk-nutrition from a risk management perspective. Journal of Animal Science, 97(Supplement_3), 174-175. doi: 10.1093/jas/skz258.358
Ly, Q. V., Nguyen, X. C., Lê, N. C., Truong, T. D., Hoang, T. H. T., Park, T. J., ... & Hur, J. (2021). Application of Machine Learning for eutrophication analysis and algal bloom prediction in an urban river: A 10-year study of the Han River, South Korea. Science of The Total Environment, 797, 149040. doi: 10.1016/j.scitotenv.2021.149040
Maxwell, S. (2015). One water: the need for more holistic thinking, analysis, and policymaking in water. Journal‐American Water Works Association, 107(3), 21-24. doi: 10.5942/jawwa.2015.107.0048
Mehdizadeh, S., Behmanesh, J., & Khalili, K. (2017). Using MARS, SVM, GEP and empirical equations for estimation of monthly mean reference evapotranspiration. Computers and electronics in agriculture, 139, 103-114. doi: 10.1016/j.compag.2017.05.002
Moghadas, D., Jadoon, K. Z., & McCabe, M. F. (2019). Spatiotemporal monitoring of soil moisture from EMI data using DCT-based Bayesian inference and neural network. Journal of Applied Geophysics, 169, 226-238. doi: 10.1016/j.jappgeo.2019.07.004
Muñoz, M., Guzmán, J. L., Sánchez-Molina, J. A., Rodríguez, F., Torres, M., & Berenguel, M. (2020). A new IoT-based platform for greenhouse crop production. IEEE Internet of Things Journal, 9(9), 6325-6334. doi: 10.1109/JIOT.2020.2996081
Nie, H., Yang, L., Li, X., Ren, L., Xu, J., & Feng, Y. (2018). Spatial prediction of soil moisture content in winter wheat based on machine learning model. In 2018 26th International Conference on Geoinformatics (pp. 1-6). IEEE.  doi: 10.1109/GEOINFORMATICS.2018.8557119
Osman, A. I. A., Ahmed, A. N., Huang, Y. F., Kumar, P., Birima, A. H., Sherif, M., ... & El-Shafie, A. (2022). Past, present and perspective methodology for groundwater modeling-based machine learning approaches. Archives of Computational Methods in Engineering, 29(6), 3843-3859. doi: 10.1007/s11831-022-09715-w
Pan, X., & Zhao, J. (2018). High-resolution remote sensing image classification method based on convolutional neural network and restricted conditional random field. Remote Sensing, 10(6), 920. doi: 10.3390/rs10060920
Perea, R. G., Poyato, E. C., Montesinos, P., & Díaz, J. R. (2019). Prediction of irrigation event occurrence at farm level using optimal decision trees. Computers and electronics in agriculture, 157, 173-180. doi: 10.1016/j.compag.2018.12.043
Pierson, L. (2021). Data science for dummies. John Wiley & Sons, NewYork, USA.
Pourmohammadali, B., Hosseinifard, S. J., Salehi, M. H., Shirani, H., & Boroujeni, I. E. (2019). Effects of soil properties, water quality and management practices on pistachio yield in Rafsanjan region, southeast of Iran. Agricultural water management, 213, 894-902. doi: 10.1016/j.agwat.2018.12.005
Prodhan, F. A., Zhang, J., Yao, F., Shi, L., Pangali Sharma, T. P., Zhang, D., ... & Mohana, H. P. (2021). Deep learning for monitoring agricultural drought in South Asia using remote sensing data. Remote Sensing, 13(9), 1715. doi: 10.3390/rs13091715
Pu, F., Ding, C., Chao, Z., Yu, Y., & Xu, X. (2019). Water-quality classification of inland lakes using Landsat8 images by convolutional neural networks. Remote Sensing, 11(14), 1674. doi: 10.3390/rs11141674
Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1, 81-106.
Raj. R. (2021). Supervised, Unsupervised, And Semi-Supervised Learning With Real-Life Usecase. Enjoy Algorithm. [Online]. Available: https://www.enjoyalgorithms.com/blogs/supervised-unsupervised-and-semisupervised-learning. Updated: 07/08/2021.
Ranjan, A. K., & Parida, B. R. (2019). Paddy acreage mapping and yield prediction using sentinel-based optical and SAR data in Sahibganj district, Jharkhand (India). Spatial Information Research, 27(4), 399-410. doi: 10.1007/s41324-019-00246-4
Raschka, S. (2018). STAT 479: Machine Learning Lecture Notes. Department of Statistics, University of Wisconsin–Madison. https://sebastianraschka.com/pdf/lecture-notes/stat479fs18/07_ensembles_notes.pdf 
Rosegrant, M. W., Ringler, C., & Zhu, T. (2009). Water for agriculture: maintaining food security under growing scarcity. Annual review of Environment and resources, 34, 205-222. doi: 10.1146/annurev.environ.030308.090351
Saraiva, M., Protas, É., Salgado, M., & Souza Jr, C. (2020). Automatic mapping of center pivot irrigation systems from satellite images using deep learning. Remote Sensing, 12(3), 558. doi: 10.3390/rs12030558
ScienceDirect. (n.d.). Search results for "water, machine learning, agriculture". Retrieved December 2023, from https://www.sciencedirect.com
Shen, R., Huang, A., Li, B., & Guo, J. (2019). Construction of a drought monitoring model using deep learning based on multi-source remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 79, 48-57. doi: 10.1016/j.jag.2019.03.006
Singh, R., Deshwal, A., & Kumar, K. (2021). Implementation of smart irrigation system using intelligent systems and machine learning approaches. In Data Science and Innovations for Intelligent Systems (pp. 299-318). CRC Press, Florida, USA.
Sinha, B. B., & Dhanalakshmi, R. (2022). Recent advancements and challenges of Internet of Things in smart agriculture: A survey. Future Generation Computer Systems, 126, 169-184. doi: 10.1016/j.future.2021.08.006
Sundmaeker, H., Verdouw, C., Wolfert, S., & Freire, L. P. (2022). Internet of food and farm 2020. In Digitising the Industry Internet of Things Connecting the Physical, Digital and VirtualWorlds (pp. 129-151). River Publishers.
Virnodkar, S. S., Pachghare, V. K., Patil, V. C., & Jha, S. K. (2020). Remote sensing and machine learning for crop water stress determination in various crops: a critical review. Precision Agriculture, 21(5), 1121-1155. doi: 10.1007/s11119-020-09711-9
Wang, H., Liu, C., & Zhang, L. (2002). Water-saving agriculture in China: an overview. Advances in Agronomy, 75, 135-171. doi: 10.1016/S0065-2113(02)75004-9
Xing, L., Cui, N., Guo, L., Du, T., Gong, D., Zhan, C., ... & Wu, Z. (2022). Estimating daily reference evapotranspiration using a novel hybrid deep learning model. Journal of Hydrology, 614, 128567. doi: 10.1016/j.jhydrol.2022.128567
Yaseen, Z. M., Al-Juboori, A. M., Beyaztas, U., Al-Ansari, N., Chau, K. W., Qi, C., ... & Shahid, S. (2020). Prediction of evaporation in arid and semi-arid regions: A comparative study using different machine learning models. Engineering applications of computational fluid mechanics, 14(1), 70-89. doi: 10.1080/19942060.2019.1680576
Zanganeh, R., Mojaradi, B., & Jabbari, E. (2016). Leak Detection from the Buried Water Transmission Pipeline Using Landsat 8 Satellite Images (Case Study of the Kosar Water Transmission Pipeline). In Proceedings of the International Conference on Civil Engineering, Tehran, Iran (pp. 8-10).
Zhi, W., Feng, D., Tsai, W. P., Sterle, G., Harpold, A., Shen, C., & Li, L. (2021). From hydrometeorology to river water quality: can a deep learning model predict dissolved oxygen at the continental scale?. Environmental science & technology, 55(4), 2357-2368. doi: 10.1021/acs.est.0c06783
CAPTCHA Image