تولید جاذب‌های زیستی از ضایعات مرکبات برای جذب آلاینده‌ها و نمک از فاضلاب‌ها

نوع مقاله : مروری

نویسندگان

گروه مهندسی شیمی، دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

یکی از مهمترین مباحث محیط‏زیستی درسطح جهان و به‌ویژه ایران، انباشت ضایعات جامد است زیرا حجم ضایعات در تولید ناخالص داخلی و درآمد ملی نگران‌کننده است. ضایعات جامد مانند ضایعات مرکبات ارزش اقتصادی ندارند و غیرقابل مصرف تلقی می‌شوند. بنابراین، استفاده از این ضایعات با ارائه روشی مناسب برای تبدیل آن‌ها به موادی با ارزش افزوده ضروری است. از طرفی، فاضلاب‌های بسیاری از صنایع، حاوی طیف گسترده‌ای از آلاینده‌های آلی و معدنی است که تصفیه مقرون‏ به‏ صرفه آن‌ها برای حل بحران آب ضروری است. روش جذب سطحی با استفاده از جاذب‌های زیستی ارزان قیمت و در دسترس یکی از کارآمدترین روش‌های حذف آلاینده‌ها از فاضلاب‌های صنعتی است. بنابراین، استفاده از ضایعات مرکبات و بهبود خواص جذب آن‌ها با کمک تیمارهای فیزیکی و شیمیایی، کربنه‌کردن، و یا ترکیبی از این روش‌ها، سبب حل هم‌زمان معضل ضایعات مرکبات و فاضلاب‌های صنعتی می‌شود. در این مطالعه مروری، جاذب‌های مختلف به‏دست آمده از ضایعات مرکبات به همراه روش‌های تولید آن‌ها بررسی و رفتار جذب آن‌ها براساس مدل‌های ایزوترم، سینتیک، و ترمودینامیک بیان می‌شود. همچنین، روش‌های بازیابی جاذب‌ها، ارزیابی اقتصادی و پیشنهادهایی برای توسعه این رویکرد ارائه می‌شود.

کلیدواژه‌ها

موضوعات


میرمجیدی هشتجین، عادل، فامیل مومن، رضا، و گودرزی، فرزاد. (1395). کاهش ضایعات محصولات کشاورزی راهبرد اصلی در ارتقاء امنیت غذایی. کرج، ایران.
Aboli, E., Jafari, D., & Esmaeili, H. (2020). Heavy metal ions (lead, cobalt, and nickel) biosorption from aqueous solution onto activated carbon prepared from Citrus limetta leaves. Carbon letters, 30, 683-698. doi.org/10.1007/s42823-020-00141-1
Abdullah, N. A., Rani, M. S. A., Mohammad, M., Sainorudin, M. H., Asim, N., Yaakob, Z., Razali, H., & Emdadi, Z. (2021). Nanocellulose from agricultural waste as an emerging nanotechnology material for nanotechnology applications–an overview. Polimery, 66(3). doi.org/10.14314/polimery.2021.3.1
Adewuyi, A. (2020). Chemically modified biosorbents and their role in the removal of emerging pharmaceuticalwaste in the water system. Water, 12, 1551. doi.org/10.3390/w12061551
Aguilar-Torrejón, J. A., Balderas-Hernández, P., Roa-Morales, G., Barrera-Díaz, C. E., Rodríguez-Torres, I., & Torres-Blancas, T. (2023). Relationship, importance, and development of analytical techniques: COD, BOD, and, TOC in water—An overview through time. SN Applied Sciences, 5(4), 118. doi.org/10.1007/s42452-023-05318-7
Ahirrao, D. J., Tambat, S., Pandit, A. B., & Jha, N. (2019). Sweet‐lime‐peels‐derived activated‐carbon‐based electrode for highly efficient supercapacitor and flow‐through water desalination. ChemistrySelect, 4(9), 2610-2625. doi.org/10.1002/slct.201803417
Aichour, A., & Zaghouane-Boudiaf, H. (2020). Single and competitive adsorption studies of two cationic dyes from aqueous mediums onto cellulose-based modified citrus peels/calcium alginate composite. International Journal of Biological Macromolecules, 154, 1227-1236. doi.org/10.1016/j.ijbiomac.2019.10.277
Annadurai, G., Juang, R. S., & Lee, D. J. (2002). Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. Journal of Hazardous Materials, 92(3), 263-274. doi.org/10.1016/S0304-3894(02)00017-1
Arunkumar, T., Lim, H. W., Denkenberger, D., & Lee, S. J. (2022). A review on carbonized natural green flora for solar desalination. Renewable and Sustainable Energy Reviews, 158, 112121. doi.org/10.1016/j.rser.2022.112121
Ashraf, M. A., Maah, M. J., Yusoff, I., Mahmood, K., & Wajid, A. (2011). Study of biosorptive potential in the peel of Citrus reticulata, Punica granatum, Daucus carota and Momordica charantia. African Journal of Biotechnology, 10(68), 15364-15371. doi.org/10.5897/AJB11.1090
Asgher, M., & Bhatti, H. N. (2012). Removal of reactive blue 19 and reactive blue 49 textile dyes by citrus waste biomass from aqueous solution: equilibrium and kinetic study. The Canadian Journal of Chemical Engineering, 90(2), 412-419. doi.org/10.1002/cjce.20531
Attallah, O. A., Al-Ghobashy, M. A., Nebsen, M., El-Kholy, R., & Salem, M. Y. (2018). Assessment of pectin-coated magnetite nanoparticles in low-energy water desalination applications. Environmental Science and Pollution Research, 25, 18476-18483. doi.org/10.1007/s11356-018-2060-9
Babu, C. S., Chakrapani, C. C., & Rao, K. S. (2011). Equilibrium and kinetic studies of reactive red 2 dye adsorption onto prepared activated carbons. Journal of Chemical and Pharmaceutical Research, 3(1), 428-439.
Bayo, J., Esteban, G., & Castillo, J. (2012). The use of native and protonated grapefruit biomass (Citrus paradisi L.) for cadmium (II) biosorption: equilibrium and kinetic modelling. Environmental Technology, 33(7), 761-772. doi.org/10.1080/09593330.2011.592227
Bello, O. S., Ahmad, M. A., & Semire, B. (2015). Scavenging malachite green dye from aqueous solutions using pomelo (Citrus grandis) peels: kinetic, equilibrium and thermodynamic studies. Desalination and Water Treatment, 56(2), 521-535. doi.org/10.1080/19443994.2014.940387
Bharadwaj, R., Singh, D., & Mahapatra, A. (2008). Seawater desalination technologies. International Journal of Nuclear Desalination, 3(2), 151-159. doi.org/10.1504/IJND.2008.020222
Bhatti, H. N., Akhtar, N., & Saleem, N. (2012). Adsorptive removal of methylene blue by low-cost Citrus sinensis bagasse: equilibrium, kinetic and thermodynamic characterization. Arabian Journal for Science and Engineering, 37, 9-18. doi.org/10.1007/s13369-011-0158-1
Bhatnagar, A., Kumar, E., Minocha, A. K., Jeon, B. H., Song, H., & Seo, Y. C. (2009). Removal of anionic dyes from water using Citrus limonum (lemon) peel: equilibrium studies and kinetic modeling. Separation Science and Technology, 44(2), 316-334. doi.org/10.1080/01496390802437461
Bhatnagar, A., Minocha, A. K., & Sillanpää, M. (2010). Adsorptive removal of cobalt from aqueous solution by utilizing lemon peel as biosorbent. Biochemical Engineering Journal, 48(2), 181-186. doi.org/10.1016/j.bej.2009.10.005
Bhambure, S., & Rao, A. S. (2019). A Review on Bio Composites in Industrial Applications. In Proceedings 2019: Conference on Technologies for Future Cities (CTFC). Veermata Jijabai Technological Institute (VJTI) - Department of Mechanical Engineering, New Panvel. Maharashtra, India.  doi.org/10.2139/ssrn.3346958
Bharath, K. N., & Basavarajappa, S. (2016). Applications of biocomposite materials based on natural fibers from renewable resources: a review. Science and Engineering of Composite Materials, 23(2), 123-133. doi.org/10.1515/secm-2014-0088
Biswas, B. K., Inoue, K., Ghimire, K. N., Ohta, S., Harada, H., Ohto, K., & Kawakita, H. (2007). The adsorption of phosphate from an aquatic environment using metal-loaded orange waste. Journal of Colloid and Interface Science, 312(2), 214-223. doi.org/10.1016/j.jcis.2007.03.072
Chatterjee, A., & Schiewer, S. (2011). Biosorption of cadmium (II) ions by citrus peels in a packed bed column: effect of process parameters and comparison of different breakthrough curve models. CLEAN–Soil, Air, Water, 39(9), 874-881. doi.org/10.1002/clen.201000482
Chatterjee, A., & Schiewer, S. (2014a). Effect of competing cations (Pb, Cd, Zn, and Ca) in fixed-bed column biosorption and desorption from citrus peels. Water, Air, & Soil Pollution, 225, 1-13. doi.org/10.1007/s11270-013-1854-0
Chatterjee, A., & Schiewer, S. (2014b). Multi-resistance kinetic models for biosorption of Cd by raw and immobilized citrus peels in batch and packed-bed columns. Chemical Engineering Journal, 244, 105-116. doi.org/10.1016/j.cej.2013.12.017
Czarnota, R., Knapik, E., Wojnarowski, P., Janiga, D., & Stopa, J. (2019). Carbon dioxide separation technologies. Archives of Mining Sciences, 64(3), 487-498. doi.org/10.24425/ams.2019.129364
Da Silva, M. D., da Boit Martinello, K., Knani, S., Lütke, S. F., Machado, L. M., Manera, C., Perondi, D., Godinho, M., Collazzo, G.C., Silva, L.F., & Dotto, G. L. (2022). Pyrolysis of citrus wastes for the simultaneous production of adsorbents for Cu (II), H2, and d-limonene. Waste Management, 152, 17-29. doi.org/10.1016/j.wasman.2022.07.024
De Souza, J. V. T. M., Diniz, K. M., Massocatto, C. L., Tarley, C. R. T., Caetano, J., & Dragunski, D. C. (2012). Removal of Pb (II) from aqueous solution with orange sub-products chemically modified as biosorbent. BioResources, 7(2), 2300-2318. doi.org/10.15376/biores.7.2.2300-2318
Dev, S., Khamkhash, A., Ghosh, T., & Aggarwal, S. (2020). Adsorptive removal of Se (IV) by citrus peels: Effect of adsorbent entrapment in calcium alginate beads. American Chemical Society omega, 5(28), 17215-17222. doi.org/10.1021/acsomega.0c01347
Dinh, V. P., Xuan, T. D., Hung, N. Q., Luu, T. T., Do, T. T. T., Nguyen, T. D., Nguyen, V.D., Anh, T.T.K., & Tran, N. Q. (2021). Primary biosorption mechanism of lead (II) and cadmium (II) cations from aqueous solution by pomelo (Citrus maxima) fruit peels. Environmental Science and Pollution Research, 28, 63504-63515. doi.org/10.1007/s11356-020-10176-6
Dutta, S., Bhattacharyya, A., Ganguly, A., Gupta, S., & Basu, S. (2011). Application of response surface methodology for preparation of low-cost adsorbent from citrus fruit peel and for removal of methylene blue. Desalination, 275(1-3), 26-36. doi.org/10.1016/j.desal.2011.02.057
El Malti, W., Hijazi, A., Abou Khalil, Z., Yaghi, Z., Medlej, M. K., & Reda, M. (2022). Comparative study of the elimination of copper, cadmium, and methylene blue from water by adsorption on the Citrus sinensis peel and its activated carbon. Royal Society of Chemistry advances, 12(17), 10186-10197. doi. org/10.1039/D1RA08997H
El Nemr, A., Abdelwahab, O., El-Sikaily, A., & Khaled, A. (2009). Removal of direct blue-86 from aqueous solution by new activated carbon developed from orange peel. Journal of Hazardous Materials, 161(1), 102-110. doi.org/10.1016/j.jhazmat.2008.03.060
Elisadiki, J., Jande, Y. A. C., Machunda, R. L., & Kibona, T. E. (2019). Porous carbon derived from Artocarpus heterophyllus peels for capacitive deionization electrodes. Carbon, 147, 582-593. doi.org/10.1016/j.carbon.2019.03.036
FENG, N. C., & GUO, X. Y. (2012). Characterization of adsorptive capacity and mechanisms on adsorption of copper, lead, and zinc by modified orange peel. Transactions of Nonferrous Metals Society of China, 22(5), 1224-1231. doi.org/10.1016/S1003-6326(11)61309-5
Foo, K. Y., & Hameed, B. H. (2011). Microwave assisted preparation of activated carbon from pomelo skin for the removal of anionic and cationic dyes. Chemical Engineering Journal, 173(2), 385-390. doi.org/10.1016/j.cej.2011.07.073
Gondhalekar, S. C., & Shukla, S. R. (2014). Equilibrium and kinetics study of uranium (VI) from aqueous solution by Citrus limetta peels. Journal of Radioanalytical and Nuclear Chemistry, 302, 451-457. doi.org/10.1007/s10967-014-3165-3
Gönen, F., & Serin, D. S. (2012). Adsorption study on orange peel: removal of Ni (II) ions from aqueous solution. African Journal of Biotechnology, 11(5), 1250-1258. doi.org/10.5897/AJB11.1753
Gunay Gurer, A., Aktas, K., Ozkaleli Akcetin, M., Erdem Unsar, A., & Asilturk, M. (2021). Adsorption isotherms, thermodynamics, and kinetic modeling of methylene blue onto novel carbonaceous adsorbent derived from bitter orange peels. Water, Air, & Soil Pollution, 232, 1-17. doi.org/10.1007/s11270-021-05090-7
Hameed, B. H., Mahmoud, D. K., & Ahmad, A. L. (2008). Sorption of basic dye from aqueous solution by pomelo (Citrus grandis) peel in a batch system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 316(1-3), 78-84. doi.org/10.1016/j.colsurfa.2007.08.033
Inagaki, C. S., Caretta, T. D. O., Alfaya, R. V. D. S., & Alfaya, A. A. D. S. (2013). Mexerica mandarin (Citrus nobilis) peel as a new biosorbent to remove Cu (II), Cd (II), and Pb (II) from industrial effluent. Desalination and Water Treatment, 51(28-30), 5537-5546. doi.org/10.1080/19443994.2012.759156
Januário, E. F. D., Vidovix, T. B., Araujo, L. A. D., Bergamasco Beltran, L., Bergamasco, R., & Vieira, A. M. S. (2022). Investigation of Citrus reticulata peels as an efficient and low-cost adsorbent for the removal of safranin orange dye. Environmental Technology, 43(27), 4315-4329. doi.org/10.1080/09593330.2021.1946601
Joglekar, J. J., Munde, Y. S., Jadhav, A. L., Bhutada, D. S., Radhakrishnan, S., & Kulkarni, M. B. (2021). Studies on effective utilization of Citrus Maxima fibers-based PVC composites. Materials Today: Proceedings, 42, 578-583. doi.org/10.1016/j.matpr.2020.10.648
Karanicola, P., Patsalou, M., Stergiou, P. Y., Kavallieratou, A., Evripidou, N., Christou, P., & Koutinas, M. (2021). Ultrasound-assisted dilute acid hydrolysis for production of essential oils, pectin, and bacterial cellulose via a citrus processing waste biorefinery. Bioresource Technology, 342, 126010. doi.org/10.1016/j.biortech.2021.126010
Khorasani, A. C., & Shojaosadati, S. A. (2019a). Magnetic pectin-Chlorella vulgaris biosorbent for the adsorption of dyes. Journal of Environmental Chemical Engineering, 7(3), 103062.  doi.org/10.1016/j.jece.2019.103062   
Khorasani, A. C., & Shojaosadati, S. A. (2019b). Intestinal adsorption of glucose, cholesterol, and bile salt by simultaneous incorporation of edible microbiosorbent and intestinal bacteria. Biocatalysis and Agricultural Biotechnology, 19, 101119. doi.org/10.1016/j.bcab.2019.101119
Khorasani, A. C., Kouhfar, F., & Shojaosadati, S. A. (2021). Pectin/lignocellulose nanofibers/chitin nanofibers bionanocomposite as an efficient biosorbent of cholesterol and bile salts. Carbohydrate Polymers, 261, 117883. doi.org/10.1016/j.carbpol.2021.117883
Khorasani, A. C., Bajestani, S. Z., & Bajestani, A. S. (2023). Comparative techno-economic assessment of production of microcrystalline cellulose, microcrystalline nitrocellulose, and solid biofuel for biorefinery of pistachio shell. Bioresource Technology Reports, 24, 101673. doi.org/10.1016/j.biteb.2023.101673
Khorasani, A. C., & Satvati, P. R. (2024). Reusable cellulose-based biosorbents for efficient iodine adsorption by economic microcrystalline cellulose production from walnut shell. International Journal of Biological Macromolecules, 256, 128432. doi.org/10.1016/j.ijbiomac.2023.128432
Khaskheli, M. I., Memon, S. Q., Siyal, A. N., & Khuhawar, M. Y. (2011). Use of orange peel waste for arsenic remediation of drinking water. Waste and Biomass Valorization, 2, 423-433. doi.org/10.1007/s12649-011-9081-7
Khormaei, M., Nasernejad, B., Edrisi, M., & Eslamzadeh, T. (2007). Copper biosorption from aqueous solutions by sour orange residue. Journal of Hazardous Materials, 149(2), 269-274. doi.org/10.1016/j.jhazmat.2007.03.074
Khaled, A., El Nemr, A., El-Sikaily, A., & Abdelwahab, O. (2009). Treatment of artificial textile dye effluent containing Direct Yellow 12 by orange peel carbon. Desalination, 238(1-3), 210-232. doi.org/10.1016/j.desal.2008.02.014
Lasheen, M. R., Ammar, N. S., & Ibrahim, H. S. (2012). Adsorption/desorption of Cd (II), Cu (II) and Pb (II) using chemically modified orange peel: Equilibrium and kinetic studies. Solid State Sciences, 14(2), 202-210. doi.org/10.1016/j.solidstatesciences.2011.11.029 
Lee, M. G., & Kam, S. K. (2018). Study on the adsorption of antibiotics trimethoprim in aqueous solution by activated carbon prepared from waste citrus peel using box-behnken design. Korean Chemical Engineering Research, 56(4), 568-576. doi.org/10.9713/kcer.2018.56.4.568
Mahato, N., Sharma, K., Sinha, M., Baral, E. R., Koteswararao, R., Dhyani, A., Cho, M.H., & Cho, S. (2020). Bio-sorbents, industrially important chemicals, and novel materials from citrus processing waste as a sustainable and renewable bioresource: A review. Journal of Advanced Research, 23, 61-82. doi.org/10.1016/j.jare.2020.01.007
Mahato, N., Agarwal, P., Mohapatra, D., Sinha, M., Dhyani, A., Pathak, B., Tripathi, M.K., & Angaiah, S. (2021). Biotransformation of citrus waste-II: bio-sorbent materials for removal of dyes, heavy metals, and toxic chemicals from polluted water. Processes, 9(9), 1544. doi.org/10.3390/pr9091544
Mafra, M. R., Igarashi-Mafra, L., Zuim, D. R., Vasques, E. C., & Ferreira, M. A. (2013). Adsorption of remazol brilliant blue on an orange peel adsorbent. Brazilian Journal of Chemical Engineering, 30, 657-665. doi.org/10.1590/S0104-66322013000300022  
Mahmoud, G. A., Abdel-Aal, S. E., Badway, N. A., Elbayaa, A. A., & Ahmed, D. F. (2017). A novel hydrogel based on agricultural waste for removal of hazardous dyes from aqueous solution and reuse process in a secondary adsorption. Polymer Bulletin, 74, 337-358. doi.org/10.1007/s00289-016-1717-0
Muniraj, K., Raju, G., Asha, B., & Manikandan, G. (2020). Citrus lemon leaf powder as a biosorbent for the removal of liquid phase toxic metals from textile effluent. Desalination and Water Treatment, 196, 422-432. doi.org/10.5004/dwt.2020.26084
Naveed, S., Bhatti, H. N., Kazmi, M., Ishfaq, T., Ikhlaq, A., & Fatima, H. (2016). Biosorption of Mn (II) by ripped Citrus paradisi pulp waste. Desalination and Water Treatment, 57(14), 6574-6581. doi.org/10.1080/19443994.2015.1011703
Namasivayam, C., Muniasamy, N., Gayatri, K., Rani, M., & Ranganathan, K. (1996). Removal of dyes from aqueous solutions by cellulosic waste orange peel. Bioresource Technology, 57(1), 37-43. doi.org/10.1016/0960-8524(96)00044-2
Osman, A. I., El-Monaem, E. M. A., Elgarahy, A. M., Aniagor, C. O., Hosny, M., Farghali, M., Rashad, E., Ejimofor, M.I., López-Maldonado, E.A., Ihara, I., Yap, P.S., Rooney, D.W., & Eltaweil, A. S. (2023). Methods to prepare biosorbents and magnetic sorbents for water treatment: a review. Environmental Chemistry Letters, 21(4), 2337-2398. doi.org/10.1007/s10311-023-01603-4
Pavan, F. A., Mazzocato, A. C., Jacques, R. A., & Dias, S. L. (2008). Ponkan peel: a potential biosorbent for removal of Pb (II) ions from aqueous solution. Biochemical Engineering Journal, 40(2), 357-362. doi.org/10.1016/j.bej.2008.01.004
Patiño-Saldivar, L., Hernández, J. A., Ardila, A., Salazar-Hernández, M., Talavera, A., & Hernández-Soto, R. (2021). Cr (III) removal capacity in aqueous solution in relation to the functional groups present in the orange peel (Citrus sinensis). Applied Sciences, 11(14), 6346. doi.org/10.3390/app11146346
Rana, A. K., Gupta, V. K., Saini, A. K., Voicu, S. I., Abdellattifaand, M. H., & Thakur, V. K. (2021). Water desalination using nanocelluloses/cellulose derivatives-based membranes for sustainable future. Desalination, 520, 115359. doi.org/10.1016/j.desal.2021.115359
Rahmat, N. A., Ali, A. A., Salmiati, Hussain, N., Muhamad, M. S., Kristanti, R. A., & Hadibarata, T. (2016). Removal of Remazol Brilliant Blue R from aqueous solution by adsorption using pineapple leaf powder and lime peel powder. Water, Air, & Soil Pollution, 227, 1-11. doi.org/10.1007/s11270-016-2807-1
Rani, S., & Chaudhary, S. (2022). Adsorption of methylene blue and crystal violet dye from waste water using Citrus limetta peel as an adsorbent. Materials Today: Proceedings, 60, 336-344. doi.org/10.1016/j.matpr.2022.01.237
Rajasekhar, K. K., Babu, R. H., Veena, B. M., Lavanya, G., Haripriya, P., & Hamsini, K. V. (2009). Adsorption studies of methylene blue and congo red on the surface of Citrus aurantium. Asian Journal of Chemistry, 21(2), 1531.
Rehman, R., Zafar, J., & Nisar, H. (2014). Adsorption studies of removal of indigo caramine dye from water by formaldehyde and urea treated cellulosic waste of citrus reticulata peels. Asian Journal of Chemistry, 26(1), 43. doi.org/10.14233/ajchem.2014.15305
Rosales, E., Meijide, J., Tavares, T., Pazos, M., & Sanromán, M. A. (2016). Grapefruit peelings as a promising biosorbent for the removal of leather dyes and hexavalent chromium. Process Safety and Environmental Protection, 101, 61-71. doi.org/10.1016/j.psep.2016.03.006
Roy, H., Prantika, T. R., Riyad, M. H., Paul, S., & Islam, M. S. (2022). Synthesis, characterizations, and RSM analysis of Citrus macroptera peel derived biochar for textile dye treatment. South African Journal of Chemical Engineering, 41, 129-139. doi.org/10.1016/j.sajce.2022.05.008
Samrot, A. V., Purohit, K., Saigeetha, S., Shobana, N., Dhas, T. S., & Cypriyana, P. J. (2022). Citrus sinensis cellulose fibres incorporated with SPIONs for effective removal of crystal violet dye. Biocatalysis and Agricultural Biotechnology, 39, 102211. doi.org/10.1016/j.bcab.2021.102211
Saeed, A., Sharif, M., & Iqbal, M. (2010). Application potential of grapefruit peel as dye sorbent: kinetics, equilibrium, and mechanism of crystal violet adsorption. Journal of Hazardous Materials, 179(1-3), 564-572. doi.org/10.1016/j.jhazmat.2010.03.041
Sattar, J. A. A. (2013). Toxic metal pollution abatement using sour orange biomass. Al-Nahrain Journal of Science, 16(3), 56-64. doi.org/10.22401/JNUS.16.3.07
Santos, C. M., Dweck, J., Viotto, R. S., Rosa, A. H., & de Morais, L. C. (2015). Application of orange peel waste in the production of solid biofuels and biosorbents. Bioresource Technology, 196, 469-479. doi.org/10.1016/j.biortech.2015.07.114
Schiewer, S., & Balaria, A. (2009). Biosorption of Pb2+ by original and protonated citrus peels: Equilibrium, kinetics, and mechanism. Chemical Engineering Journal, 146(2), 211-219. doi.org/10.1016/j.cej.2008.05.034
Schiewer, S., & Iqbal, M. (2010). The role of pectin in Cd binding by orange peel biosorbents: a comparison of peels, depectinated peels and pectic acid. Journal of Hazardous Materials, 177(1-3), 899-907. doi.org/10.1016/j.jhazmat.2010.01.001
Sharma, P., & Gupta, S. (2014). Study of amount of Oxygen (BOD, OD, COD) in water and their effect on fishes. American International Journal of Research in Formal, Applied and Natural Sciences, 7(1), 53-58. 
Shakoor, S., & Nasar, A. (2016). Removal of methylene blue dye from artificially contaminated water using Citrus limetta peel waste as a very low-cost adsorbent. Journal of the Taiwan Institute of Chemical Engineers, 66, 154-163. doi.org/10.1016/j.jtice.2016.06.009
Sivaraj, R., Namasivayam, C., & Kadirvelu, K. (2001). Orange peel as an adsorbent in the removal of acid violet 17 (acid dye) from aqueous solutions. Waste Management, 21(1), 105-110. doi.org/10.1016/S0956-053X(00)00076-3
Singh, S. A., & Shukla, S. R. (2016). Adsorptive removal of cobalt ions on raw and alkali-treated lemon peels. International Journal of Environmental Science and Technology, 13, 165-178. doi.org/10.1007/s13762-015-0801-6
Singh, S., & Shukla, S. R. (2017). Theoretical studies on adsorption of Ni (II) from aqueous solution using Citrus limetta peels. Environmental Progress & Sustainable Energy, 36(3), 864-872. doi.org/10.1002/ep.12526
Sowmya Lakshmi, K. B., & Munilakshmi, N. (2016). Adsorptive removal of colour from aqueous solution of disazo dye by using organic adsorbents. International Journal of ChemTech Research, 9(4), 407-415.
Tasaso, P. (2014). Adsorption of copper using pomelo peel and depectinated pomelo peel. Journal of Clean Energy Technologies, 2(2), 154-157. doi.org/10.7763/JOCET.2014.V2.112
Tayel, A., Nasr, P., & Sewilam, H. (2019). Forward osmosis desalination using pectin-coated magnetic nanoparticles as a draw solution. Clean Technologies and Environmental Policy, 21, 1617-1628. doi.org/10.1007/s10098-019-01738-5
Torab-Mostaedi, M., Asadollahzadeh, M., Hemmati, A., & Khosravi, A. (2013). Equilibrium, kinetic, and thermodynamic studies for biosorption of cadmium and nickel on grapefruit peel. Journal of the Taiwan Institute of Chemical Engineers, 44(2), 295-302. doi.org/10.1016/j.jtice.2012.11.001
Verma, L., Siddique, M. A., Singh, J., & Bharagava, R. N. (2019). As (III) and As (V) removal by using iron impregnated biosorbents derived from waste biomass of Citrus limmeta (peel and pulp) from the aqueous solution and ground water. Journal of Environmental Management, 250, 109452. doi.org/10.1016/j.jenvman.2019.109452
Wilson, H. M., Ahirrao, D. J., Ar, S. R., & Jha, N. (2020). Biomass-derived porous carbon for excellent low intensity solar steam generation and seawater desalination. Solar Energy Materials and Solar Cells, 215, 110604. doi.org/10.1016/j.solmat.2020.110604
Wu, S., Li, K., Shi, W., & Cai, J. (2022). Chitosan/polyvinylpyrrolidone/polyvinyl alcohol/carbon nanotubes dual layers nanofibrous membrane constructed by electrospinning-electrospray for water purification. Carbohydrate Polymers, 294, 119756. doi.org/10.1016/j.carbpol.2022.119756
Xie, Z., Shang, X., Yan, J., Hussain, T., Nie, P., & Liu, J. (2018). Biomass-derived porous carbon anode for high-performance capacitive deionization. Electrochimica Acta, 290, 666-675. doi.org/10.1016/j.electacta.2018.09.104
Yadav, M., Jadeja, R., & Thakore, S. (2022). An ecofriendly approach for methylene blue and lead (II) adsorption onto functionalized Citrus limetta bioadsorbent. Environmental Processes, 9(2), 27. doi.org/10.1007/s40710-022-00583-x
CAPTCHA Image