ارزیابی مدل‏‌های MIKE SHE و MIKE 11 برای شبیه‏سازی هیدرولوژی آب‏‌های سطحی و آب‌‏های زیرزمینی در آبخوان دشت فومنات

نوع مقاله : پژوهشی کاربردی

نویسندگان

1 گروه مهندسی آب، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران

2 شرکت مهندسی HLV2K، اونتاریو، کانادا

چکیده

آبخوان‌‏های آبرفتی کم‏‌عمقی که در حوضه‌های آبریز با رودخانه‌‏های متعدد واقع می‏‌شوند، با برهمکنش‌های پیچیده هیدرولوژیکی و هیدرولیکی که بین زیرسیستم‌های مختلف از جمله منطقه هوادهی، آب‌های زیرزمینی و آب‌های سطحی مواجه می‏‌شوند، ممکن است برای شبیه‏‌سازی و توصیف قابل اطمینان این فرآیندها، مدل‌های هیدرولوژیکی آب‌های سطحی و آب‏‌های زیرزمینی به‏‌صورت ادغام شده ضروری باشد. در این مطالعه، مدل هیدرولوژیکی یکپارچه MIKE SHE به‏‌صورت متصل با مدل هیدرودینامیکی MIKE 11 در آبخوان فومنات، توسعه و ارزیابی شد. برای دستیابی به یک مدل قابل اطمینان، به‏‌صورت موازی سطوح آب زیرزمینی و جریان رودخانه در نقاط کنترل چاه‌‏های مشاهده‌‏ای و ایستگاه‌‏های هیدرومتری واقع در محدوده مورد مطالعه، واسنجی انجام شد. براساس تحلیل حساسیت، واسنجی با استفاده از پارامترهای هدایت هیدرولیکی اشباع، ضرایب نشت و ضریب زبری مانینگ انجام شد. باوجود ناهمگونی‏‌های عارضه‏‌های طبیعی در منطقه، عملکرد مدل به‌‏صورت میانگین با خطای مطلق کمتر از یک، برای برآورد تراز سطح آب زیرزمینی و کمتر از 0/5 برای برآورد دبی جریان در ایستگاه‏‌های هیدرومتری قابل قبول بود. در طول فصل تر (مهر تا اسفند)، تبخیر و تعرق واقعی با میانگین 0/4 برابر کل بارندگی این دوره و در طول فصل خشک (فروردین تا شهریور)، تبخیر و تعرق واقعی با میانگین 7/3 برابر کل بارندگی این دوره به مولفه اصلی تلفات آب تبدیل می‌شود. باتوجه‌‏به اینکه، این نتایج برای یک سال ترسالی است، این نسبت‏ها برای سال‌‏های خشک و نرمال افزایش خواهد یافت.

کلیدواژه‌ها

موضوعات


Akram, F., Rasul, M.G., Khan, M.M.K., & Amir, M.S.I.I. (2012). A Comparative View of Groundwater Flow Simulation Using Two Modelling Software - MODFLOW and MIKE SHE. 18th Australasian Fluid Mechanics Conference. Launceston, Australia. 
Allen, R., PEREIRA, L., RAES, D., & SMITH, M. (1998). Crop Evapotranspiration (guidelines for computing crop water requirements). FAO, Paper No. 56. Water Resources, Development and Management Service. Rome, Italy.
Allen R.G., Pruitt W.O., Wright J.L., Howell T.A., Ventura F., Snyder R., Itenfisu D., Steduto P., Berengena J., Yrisarry J.B., Smith M., Pereira L.S., Raes D., Perrier A., Alves I., Walter I., & Elliott R.L. (2006). A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO 56 Penman-Monteith method. Agricultural Water Management, 81(1), 1-22. doi.org/10.1016/j.agwat.2005.03.007
Bizhanimanzar, M., Leconte, R., & Nuth, M. (2019). Modelling of shallow water table dynamics using conceptual and physically based integrated surface-water–groundwater hydrologic models. Hydrology and Earth System Sciences, 23(5), 2245–2260. doi: 10.5194/hess-23-2245-2019
Bizhanimanzar, M., Leconte, R., & Nuth, M. (2020). Catchment-Scale Integrated Surface Water-Groundwater Hydrologic Modelling Using Conceptual and Physically Based Models: A Model Comparison Study. Water, 12(2), 363. doi: 10.3390/w12020363
Botero-Acosta, A., Chu, M.L., & Huang, C. (2018). Impacts of environmental stressors on nonpoint source pollution in intensively managed hydrologic systems. Journal of Hydrology, 579, 124056.  doi: 10.1016/j.jhydrol.2019.124056
Doummar, J., Sauter, M., & Geyer, T. (2012). Simulation of flow processes in a large-scale karst system with an integrated catchment model (Mike She) – Identification of relevant parameters influencing spring discharge. Journal of Hydrology, 426–427, 112-123. doi: 10.1016/j.jhydrol.2012.01.021
Golmohammadi, G., Prasher, S., Madani, A., & Rudra, R. (2014). Evaluating Three Hydrological Distributed Watershed Models: MIKE-SHE, APEX, SWAT. Hydrology, 1(1), 20-39. doi: 10.3390/hydrology1010020
Graham, D.N., & Butts, M. B. (2005). Flexible, integrated watershed modelling with MIKE SHE. In Watershed Models, Editors: V.P. Singh & D.K. Frevert, Pages 245-272, CRC Press. Boca Raton, Florida.
Guermazi, E., Milano, M., Reynard, E., & Zairi, M. (2019). Impact of climate change and anthropogenic pressure on the groundwater resources in arid environment. Mitigation and Adaptation Strategies for Global Change, 24(1), 73-92. doi: 10.1007/s11027-018-9797-9
Margarita Ntona, M., Busico, G., Mastrocicco, M., & Kazakis, N. (2022). Modeling groundwater and surface water interaction: An overview of current status and future challenges. Science of the Total Environment, 846, 157355. doi: 10.1016/j.scitotenv.2022.157355
Prucha, B., Graham, D., Watson, M., Avenant, M., Esterhuyse, S., Joubert, A., Kemp, M., King, J., Roux, P., Redelinghuys, N., Rossouw, L., Rowntree, K., Seaman, M., Sokolic, F., Rensburg, L., Waal, B., Tol, J., & Vos, T. (2016). MIKE-SHE integrated groundwater and surface water model used to simulate scenario hydrology for input to DRIFT-ARID: the Mokolo River case study. Water SA, 42(3), 384-398. doi: 10.4314/wsa.v42i3.03
Sandu, M., & Virsta, A. (2015). Applicability of MIKE SHE to Simulate Hydrology in Argesel River Catchment. Agriculture and Agricultural Science Procedia, 6, 517–524. doi: 10.1016/j.aaspro.2015.08.135
Shu, Y., Villholth, K. G., Jensen, K.H., Stisen, S., & Lei, Y. (2012). Integrated hydrological modeling of the North China Plain: Options for sustainable groundwater use in the alluvial plain of Mt. Taihang. Journal of Hydrology, 464-465, 79-93. Doi:10.1016/j.jhydrol.2012.06.048.
Shu, Y., Li, H., & Lei, Y. (2018). Modelling Groundwater Flow with MIKE SHE Using Conventional Climate Data and Satellite Data as Model Forcing in Haihe Plain, China. Water, 10(10), 1295. doi: 10.3390/w10101295
Sophocleous, M. (1985). The Role of Specific Yield in Ground-Water Recharge Estimations: A Numerical Study. Groundwater, 23, 52–58. doi: 10.1111/j.1745-6584.1985.tb02779.x
Sterte, E.J., Johansson, E., Sjöberg, Y., Karlsen, R. H., & Laudon, H. (2018). Groundwater-surface water interactions across scales in a boreal landscape investigated using a numerical modeling approach. Journal of Hydrology, 560, 184–201. doi: 10.1016/j.jhydrol.2018.03.011
Voeckler, H.M., Allen, D.M., & Alila, Y. (2014). Modeling coupled surface water groundwater processes in a small mountainous headwater catchment. Journal of Hydrology, 517, 1089–1106. doi: 10.1016/j.jhydrol.2014.06.015
Waseem, M., Kachholz, F., Klehr, W., & Tränckner, J. (2020). Suitability of a Coupled Hydrologic and Hydraulic Model to Simulate Surface Water and Groundwater Hydrology in a Typical North-Eastern Germany Lowland Catchment. Applied sciences, 10(4),1281. doi: 10.3390/app10041281
Zhang, X., Zwiers, F.W., Hegerl, G.C., Lambert, F.H., Gillett, N.P., Solomon, S., Stott, P.A., & Nozawa, T. (2007). Detection of human influence on twentieth-century precipitation trends. Nature, 448, 461–465.doi: 10.1038/nature06025
Zhang, J., Zhang, M., Song, Y., & Lai, Y. (2021). Hydrological simulation of the Jialing River Basin using the MIKE SHE model in changing climate. Journal of Water and Climate change, 12(6), 2495-2514. doi: 10.2166/wcc.2021.253
Wu, W., Yang, Z., Tian, B., Huang, Y., Zhou, Y., & Zhang, T. (2018). Impacts of coastal reclamation on wetlands: Loss, resilience, and sustainable management. Estuarine, Coastal and Shelf Science 210, 153-161. doi.org/10.1016/j.ecss.2018.06.013
CAPTCHA Image