ضرورت ایجاد یک دیدگاه جامع به منظور مدیریت ریسک سیل شهری

نوع مقاله : مروری

نویسندگان

گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

سیل‌ها، بعد از زلزله و طوفان‌های استوایی سومین بلای خسارت‌ساز در چند سال گذشته بوده‌اند. از آنجایی که بسیاری از شهرها به دلیل منافع اقتصادی در دشت‌های سیلابی و یا در سواحل واقع شده‌اند، مدیریت ریسک سیل به یک موضوع مهم و قابل توجه تبدیل شده‌است. پتانسیل خسارت سیل در شهرها بسیار زیاد است، زیرا علاوه بر این که طغیان رودخانه موجب وقوع سیل در شهرها می‌شود، تمرکز جمعیت و دارایی‌های با‌ارزش سبب می‌شود که خسارات سیل در مناطق شهری بسیار گسترده باشد. بنابراین لازم است تا اجزای تابع ریسک سیل به درستی درک شوند و برای هریک، برنامه‌ریزی‌های موثری با توجه به شرایط هر منطقه انجام گیرد. در این پژوهش ریسک سیل به عنوان تابعی از مخاطره، آسیب‌پذیری و در معرض بودن تعریف شده‌است. تمرکز قابل توجهی به نقش فقر در تشدید خطر سیل معطوف شده‌است؛ زیرا در شهرهای بزرگ راهبرد‌های مدیریتی در مناطق مختلف شهری با توجه به وضعیت فرهنگی و سطح توسعه اقتصادی آن مناطق باید متفاوت باشد. همچنین این مقاله بر ضرورت مدیریت و برنامه‌ریزی مشارکتی در مناطق سیل‌خیز تأکید می‌کند و پیامدهای حذف جوامع آسیب‌دیده و ذی‌نفعان را برجسته می‌کند. در نهایت، بخش‌های مختلف ایجاد یک چارچوب جامع در مدیریت ریسک سیل ارائه می‌شود.

کلیدواژه‌ها

موضوعات


آذینی، کیومرث، قنبری‌موحد، رضوان، و رحیمیان، مهدی. (1402). بررسی اثرات سیل بر معیشت پایدار خانوارهای روستایی (مطالعه موردی دهستان آبستان، شهرستان خرم آباد). فصلنامه مطالعات جغرافیایی مناطق کوهستانی، 4(2)، 187-204. http://gsma.lu.ac.ir/article-1-518-fa.html
اکرمی مقدم، بهار، ایلخانی پور زینالی، رسول، و نیک مهر، سامان. (1403). پهنه‌بندی پتانسیل سیل‌گیری با استفاده از روش تحلیل سلسله مراتبی در استان کردستان. محیط زیست و مهندسی آب، 10(1)، 79-93. https://doi.org/10.22034/ewe.2023.388125.1850
امامی, کامران، کبارفرد، محمد، و کراری، زینب. (1389). بهینه سازی مدیریت سیلاب شهری با روش‌های غیرسازه‌ای مطالعه موردی سیستم هشدار سیل گلابدره دربند. اولین کنفرانس ملی مدیریت سیلاب‌های شهری. تهران، ایران.
امینا، زهرا، و حکمت زاده، علی‌اکبر. (1400). تخمین سیلاب برق آسا در حوضه‌های آبریز کوچک: مطالعه موردی حوضه آبریز دروازه قرآن شیراز. بیستمین کنفرانس هیدرولیک ایران، گرگان، ایران. 
بهمنی، سجاد، و محمدی ده چشمه، مصطفی. (1402). مطالعه جامعه شناختی چالش مدیریت آب‌های سطحی و تأثیر آن بر زندگی روزمره شهروندان اهوازی (مطالعه موردی: حادثه سیلاب شهری و بالازدگی فاضلاب در شهرهای اهواز و کارون سال ۱۳۹۸ تا ۱۴۰۰). فصلنامه توسعه اجتماعی، 18(1)، 227-250. https://doi.org/10.22055/qjsd.2023.41990.2734
پوراحمد، احمد، صادقی، علیرضا. (1402). ارزیابی مولفه‌های تاب‌آوری محلات شهری در برابر سیلاب (مورد مطالعه: محلات واقع بر مسیر رودخانه‌ها در مناطق 1، 2، 3، 5 و 22 شهرداری تهران). فصلنامه مطالعات جغرافیایی مناطق کوهستانی، 4(2)، 23-42. http://gsma.lu.ac.ir/article-1-485-fa.html
حسنی، محمدجواد. (1402). بررسی عوامل موثر در بروز سیل جهت مدیریت خسارات ناشی از آن در ناحیه گردشگری سیرچ. فصلنامه مدیریت شهری و مهندسی محیط‌زیست، 1(4)، 85-102.  doi: 10.48306/jumee.2024.445725.1039
خاتونی، کوشا، هوشیاری‌پور، فرهاد، نوری، روح‌الله، و ملک محمدی، بهرام. (1402). مدلسازی و پهنه‌بندی دو بعدی سیلاب شهری در حوضه شمال شهر کرج با استفاده از HEC-RAS 2D. دو فصلنامه مهندسی آب، 11(1)، 99-110. https://sanad.iau.ir/fa/Article/1024540?FullText=FullText
درگاه الکترونیکی پایگاه خبری و تحلیلی انصاف، (1401)، https://ensafnews.com/ ، کد خبر، 360430، تاریخ به‌روز رسانی، 4/5/1401.
درگاه الکترونیکی خبرگزاری ایسنا. (1398). گزارش خبری: رودخانه منتهی به دروازه قرآن لایروبی نشده بود، کوتاهی مسئولین شهرداری شیراز علی‌رغم هشدارها، https://www.isna.ir/news  
درگاه الکترونیکی خبرگزاری خبر آنلاین، (1401)، سیلاب‌های مرگبار تهران پس از انقلاب؛ از ۳۰۰ کشته سیل تجریش تا سیلاب امامزاده داوود، https://www.khabaronline.ir/news/1656037
درگاه الکترونیکی خبرگزاری مهر. (1398). اخبار ایران و جهان، «پیگیری قضائی بررسی سهل انگاری سیل شیراز /رودخانه لایروبی نشده بود»، https://www.mehrnews.com/news
رضایی‌مقدم، محمد حسین، و رحیم‌پور، توحید. (1402). تهیۀ نقشۀ پتانسیل خطر وقوع سیل با استفاده از دو روش نسبت فراوانی و شاخص آماری (مطالعۀ موردی: حوضۀ آبریز آجی‌چای). مدیریت مخاطرات محیطی، 10(4)، 291-308. doi: 10.22059/jhsci.2024.369163.803
زیاری، کرامت اله، رجایی، سید عباس، و داراب خانی، رسول. (1402). الگوی مناسب مدیریت بحران سیلاب شهرایلام. فصلنامه توسعه پایدار محیط جغرافیایی، 5(9)، 72-89. doi: 10.48308/sdge.2023.230355.1114
طاهری، سیده محدثه، و مساعدی، ابوالفضل. (1402). مروری بر راهبردهای مدیریت ریسک سیل و چالش های قانونی و عملی. دو فصلنامه آب و توسعه پایدار، 10(3)، 35-50. https://doi.org/10.48308/sdge.2023.230355.1114
قهرمان، بیژن. (1382). بررسی جامع رگبار ۱۶ خرداد ۱۳۷۱ مشهد. دوفصلنامه تولید و فرآوری محصولات زراعی و باغی، 7(2)، 29-41. http://jcpp.iut.ac.ir/article-1-462-fa.html
محمدزاده هابیلی، جهانشیر، حسینی، زهرا، خلیلی، داور، هنر، تورج، زند پارسا، شاهرخ، و طالب‌نژاد، رضوان. (1398). تولید هیدروگراف سیلاب 5 فروردین دروازه قرآن شهر شیراز بر مبنای مدلسازی فیزیکی، هیدرولیکی و هیدرولوژیکی. هجدهمین کنفرانس هیدرولیک ایران، تهران، ایران.
محمدی‌استادکلایه، امین، مساعدی، ابوالفضل، و علاقمند، سینا. (1386). بررسی اثرات سیل مرداد 1380 شرق گلستان بر مورفولوژی رودخانه مادرسو. علوم کشاورزی و منابع طبیعی، 14(ویژه نامه منابع طبیعی (ضمیمه))، 9-17.
Aerts, J. C., Botzen, W. J., Clarke, K. C., Cutter, S. L., Hall, J. W., Merz, B., Michel-Kerjan, E., Mysiak, J., Surminski, S., & Kunreuther, H. (2018). Integrating human behaviour dynamics into flood disaster risk assessment. Nature Climate Change, 8(3), 193-199. https://doi.org/10.1038/s41558-018-0085-1
Alexander, J., Barclay, J., Sušnik, J., Loughlin, S. C., Herd, R. A., Darnell, A., & Crosweller, S. (2010). Sediment-charged flash floods on Montserrat: the influence of synchronous tephra fall and varying extent of vegetation damage. Journal of Volcanology and Geothermal Research, 194(4), 127-138. https://doi.org/10.1016/j.jvolgeores.2010.05.002
APFM, A. (2008). Tool for Integrated Flood Management: Urban Flood Risk Management. World Meteorological Organization, Geneva, Switzerland. 
Balica, S., Douben, N., & Wright, N. G. (2009). Flood vulnerability indices at varying spatial scales. Water science and Technology, 60(10), 2571-2580. https://doi.org/10.2166/wst.2009.183
Ballesteros-Cánovas, J. A., Rodríguez-Morata, C., Garófano-Gómez, V., Rubiales, J. M., Sánchez-Salguero, R., & Stoffel, M. (2015). Unravelling past flash flood activity in a forested mountain catchment of the Spanish Central System. Journal of Hydrology, 529, 468-479. https://doi.org/10.1016/j.jhydrol.2014.11.027
Bayas-Jiménez, L., Martínez-Solano, F. J., Iglesias-Rey, P. L., & Boano, F. (2022). Economic Analysis of Flood Risk Applied to the Rehabilitation of Drainage Networks. Water, 14(18), 2901. https://doi.org/10.3390/w14182901
Beringer, A. L., & Kaewsuk, J. (2018). Emerging livelihood vulnerabilities in an urbanizing and climate uncertain environment for the case of a secondary city in Thailand. Sustainability, 10(5), 1452. https://doi.org/10.3390/su10051452
Bermúdez, M., Farfán, J., Willems, P., & Cea, L. (2021). Assessing the effects of climate change on compound flooding in coastal river areas. Water resources research, 57(10), e2020WR029321. https://doi.org/10.1029/2020WR029321
Bin, L., Xu, K., Pan, H., Zhuang, Y., & Shen, R. (2023). Urban flood risk assessment characterizing the relationship among hazard, exposure, and vulnerability. Environmental Science and Pollution Research, 30(36), 86463-86477. https://link.springer.com/article/10.1007/s11356-023-28578-7
Blöschl, G., Gaál, L., Hall, J., Kiss, A., Komma, J., Nester, T., Parajka, J., Perdigão, R. A., Plavcová, L., & Rogger, M. (2015). Increasing river floods: fiction or reality? Wiley Interdisciplinary Reviews: Water, 2(4), 329-344. https://doi.org/10.1002/wat2.1079
Braun, B., & Aßheuer, T. (2011). Floods in megacity environments: vulnerability and coping strategies of slum dwellers in Dhaka/Bangladesh. Natural Hazards, 58 (2), 771-787. https://doi.org/10.1007/s11069-011-9752-5
Bruwier, M., Mustafa, A., Aliaga, D. G., Archambeau, P., Erpicum, S., Nishida, G., Zhang, X., Pirotton, M., Teller, J., & Dewals, B. (2018). Influence of urban pattern on inundation flow in floodplains of lowland rivers. Science of the Total Environment, 622, 446-458. https://doi.org/10.1016/j.scitotenv.2017.11.325
Burby, R. (2014). Land-use planning for flood hazard reduction: the United States experience. In Floods (pp. 6-18). Routledge. Washington, D.C., United States. 
Chen, A. S., Leandro, J., & Djordjević, S. (2016). Modelling sewer discharge via displacement of manhole covers during flood events using 1D/2D SIPSON/P-DWave dual drainage simulations. Urban Water Journal, 13(8), 830-840. https://doi.org/10.1080/1573062X.2015.1041991
National Research Council. (2013). Levees and the National Flood Insurance Program: Improving Policies and Practices. Washington, DC: The National Academies Press. https://doi.org/10.17226/18309
D'Ayala, D., Wang, K., Yan, Y., Smith, H., Massam, A., Filipova, V., & Pereira, J. J. (2020). Flood vulnerability and risk assessment of urban traditional buildings in a heritage district of Kuala Lumpur, Malaysia. Natural Hazards and Earth System Sciences, 20(8), 2221-2241. https://doi.org/10.5194/nhess-20-2221-2020
Dao-yi, G., Jin-hong, Z., & Shao-wu, W. (2001). Flooding 1990s along the Yangtze River, has it concern of global warming? Journal of Geographical Sciences, 11(1), 43-52. https://doi.org/10.1007/BF02837375
Diakakis, M., Deligiannakis, G., Antoniadis, Z., Melaki, M., Katsetsiadou, N., Andreadakis, E., Spyrou, N., & Gogou, M. (2020). Proposal of a flash flood impact severity scale for the classification and mapping of flash flood impacts. Journal of Hydrology, 590, 125452. httsp://doi.org/10.1016/j.jhydrol.2020.125452
Du, S., Shi, P., Van Rompaey, A., & Wen, J. (2015). Quantifying the impact of impervious surface location on flood peak discharge in urban areas. Natural Hazards, 76(3), 1457-1471. httsp://doi.org/10.1007/s11069-014-1463-2
Dwarapureddi, B. K., Dash, S., Raj, A., Garika, N. S., Kumar, A., & Vara, S. (2022). Prevention of soil erosion and torrential floods. In Prevention and Management of Soil Erosion and Torrential Floods (pp. 92-111). IGI Global. https://doi.org/10.4018/978-1-7998-8459-0.ch005
Ellis, J. B., & Revitt, D. M. (2010). The management of urban surface water drainage in England and Wales. Water and Environment Journal, 24(1), 1-8. https://doi.org/10.1111/j.1747-6593.2009.00203.x
Fatemi, M. N., Okyere, S. A., Diko, S. K., Kita, M., Shimoda, M., & Matsubara, S. (2020). Physical vulnerability and local responses to flood damage in peri-urban areas of Dhaka, Bangladesh. Sustainability, 12(10), 3957. https://doi.org/10.3390/su12103957
Feng, B., Zhang, Y., & Bourke, R. (2021). Urbanization impacts on flood risks based on urban growth data and coupled flood models. Natural Hazards, 106 (1), 613-627. https://doi.org/10.1007/s11069-020-04480-0
Ferrarin, C., Tomasin, A., Bajo, M., Petrizzo, A., & Umgiesser, G. (2015). Tidal changes in a heavily modified coastal wetland. Continental Shelf Research, 101, 22-33. https://doi.org/10.1016/j.csr.2015.04.002
Gain, A. K., Mojtahed, V., Biscaro, C., Balbi, S., & Giupponi, C. (2015). An integrated approach of flood risk assessment in the eastern part of Dhaka City. Natural Hazards, 79 (3), 1499-1530. https://doi.org/10.1007/s11069-015-1911-7
Gheorghe, A. V. (2005). Integrated risk and vulnerability management assisted by decision support systems: Relevance and impact on governance (Vol. 8). Springer Science & Business Media, Dordrecht, Netherlands. 
Gopinath, N., Aruneraj, J., & Ragul, V. (2022). IoT based model for flood warning system in waterfall. 2022 1st International Conference on Computational Science and Technology (ICCST). Chennai, India. https://doi.org/10.1109/ICCST55948.2022.10040286
Green, C. (2004). The evaluation of vulnerability to flooding. Disaster Prevention and Management: An International Journal, 13(4), 323-329. https://doi.org/10.1108/09653560410556546
Guo, K., Guan, M., & Yu, D. (2021). Urban surface water flood modelling – a comprehensive review of current models and future challenges, Hydrol. Earth Syst. Sci., 25, 2843–2860. https://doi.org/10.5194/hess-25-2843-2021
Haer, T., Husby, T. G., Botzen, W. W., & Aerts, J. C. (2019). The safe development paradox: An agent-based model for flood risk under climate change in the European Union. Global Environmental Change, 60 (2), 102009. https://doi.org/10.1016/j.gloenvcha.2019.102009
Hall, J. W., Sayers, P. B., & Dawson, R. J. (2005). National-scale assessment of current and future flood risk in England and Wales. Natural Hazards, 36 (1), 147-164. https://doi.org/10.1007/s11069-004-4546-7
Hu, X., Pant, R., Hall, J. W., Surminski, S., & Huang, J. (2019). Multi-scale assessment of the economic impacts of flooding: evidence from firm to macro-level analysis in the Chinese manufacturing sector. Sustainability, 11(7), 1933. https://doi.org/10.3390/su11071933
Jha, A. K., Bloch, R., & Lamond, J. (2012). Cities and flooding: a guide to integrated urban flood risk management for the 21st century. World Bank Publications, Washington, D.C., United States. 
Karami, M., Abedi Koupai, J., & Gohari, S. A. (2024). Integration of SWAT, SDSM, AHP, and TOPSIS to detect flood-prone areas. Natural Hazards, 120 (7), 6307-6325. https://doi.org/10.1007/s11069-024-06483-7
Lee, Y., & Brody, S. D. (2018). Examining the impact of land use on flood losses in Seoul, Korea. Land use policy, 70(2), 500-509. https://doi.org/10.1016/j.landusepol.2017.11.019
Li, Z., Wu, Y., Li, J., Qi, P., Sun, J., & Sun, Y. (2023). Attribution Analysis of Runoff Variation in the Second Songhua River Based on the Non-Steady Budyko Framework. Water, 15(3), 451. https://doi.org/10.3390/w15030451
Liu, X., & Chen, H. (2019). Integrated assessment of ecological risk for multi-hazards in Guangdong province in southeastern China. Geomatics, Natural Hazards and Risk, 10(1), 2069-2093. https://doi.org/10.1080/19475705.2019.1680450
Mahanta, R., & Das, D. (2017). Flood induced vulnerability to poverty: evidence from Brahmaputra Valley, Assam, India. International journal of disaster risk reduction, 24, 451-461. https://doi.org/10.1016/j.ijdrr.2017.04.014
McElwee, P., Nghiem, T., Le, H., & Vu, H. (2017). Flood vulnerability among rural households in the Red River Delta of Vietnam: implications for future climate change risk and adaptation. Natural Hazards, 86, 465-492. https://doi.org/10.1007/s11069-016-2701-6
Mohanty, M. P., Mudgil, S., & Karmakar, S. (2020). Flood management in India: A focussed review on the current status and future challenges. International journal of disaster risk reduction, 49, 101660. https://doi.org/10.1016/j.ijdrr.2020.101660
Muzamil, S. A. H. B. S., Zainun, N. Y., Ajman, N. N., Sulaiman, N., Khahro, S. H., Rohani, M. M., Mohd, S. M. B., & Ahmad, H. (2022). Proposed framework for the flood disaster management cycle in Malaysia. Sustainability,14(7), 4088. https://doi.org/10.3390/su14074088
Nkwunonwo, U. C., Whitworth, M., & Baily, B. (2016). A review and critical analysis of the efforts towards urban flood risk management in the Lagos region of Nigeria. Natural Hazards and Earth System Sciences, 16(2), 349-369. https://doi.org/10.5194/nhess-16-349-2016
Ocampo-Martinez, C., Puig, V., Cembrano, G., & Quevedo, J. (2013). Application of predictive control strategies to the management of complex networks in the urban water cycle [applications of control]. IEEE Control Systems Magazine, 33(1), 15-41. https://doi.org/10.1109/MCS.2012.2225919
Osheen, & Singh, K.K. (2019). Rain garden—A solution to urban flooding: A review. Sustainable Engineering: Proceedings of EGRWSE 2018, 27-35. https://doi.org/10.1007/978-981-13-6717-5_4
Qie, X., Yuan, S., Chen, Z., Wang, D., Liu, D., Sun, M., Sun, Z., Srivastava, A., Zhang, H., & Lu, J. (2021). Understanding the dynamical-microphysical-electrical processes associated with severe thunderstorms over the Beijing metropolitan region. Science China Earth Sciences, 64, 10-26. https://doi.org/10.1007/s11430-020-9656-8
Quesada-Román, A. (2022). Flood risk index development at the municipal level in Costa Rica: A methodological framework. Environmental Science & Policy, 133, 98-106. https://doi.org/10.1016/j.envsci.2022.03.012
Rahman, M., Ningsheng, C., Mahmud, G., Islam, M., Pourghasemi, H., Ahmad, H., Habumugisha, J., Washakh, R., Alam, M., & Liu, E. (2021). Flooding and its relationship with land cover change, population growth, and road density. Geosci. Front, 12(6), 101224. https://doi.org/10.1016/j.gsf.2021.101224
Sado-Inamura, Y., & Fukushi, K. (2019). Empirical analysis of flood risk perception using historical data in Tokyo. Land use policy, 82, 13-29. https://doi.org/10.1016/j.landusepol.2018.11.031
Sampson, C. C., Smith, A. M., Bates, P. D., Neal, J. C., Alfieri, L., & Freer, J. E. (2015). A high‐resolution global flood hazard model. Water resources research, 51(9), 7358-7381. https://doi.org/10.1002/2015WR016954
Samu, R., & Kentel, A. S. (2018). An analysis of the flood management and mitigation measures in Zimbabwe for a sustainable future. International journal of disaster risk reduction, 31, 691-697. https://doi.org/10.1016/j.ijdrr.2018.07.013
Santos, P. P., Pereira, S., Zêzere, J. L., Tavares, A. O., Reis, E., Garcia, R. A., & Oliveira, S. C. (2020). A comprehensive approach to understanding flood risk drivers at the municipal level. Journal of environmental management, 260, 110127. https://doi.org/10.1016/j.jenvman.2020.110127
Sayers, P., Yuanyuan, L., Galloway, G., Penning-Rowsell, E., Fuxin, S., Kang, W., Yiwei, C., & Le Quesne, T. (2013). Flood risk management: A strategic approach. In: Asian Development Bank, GIWP, UNESCO and WWF-UK, Manila, Philippines.
Sertel, E., Imamoglu, M. Z., Cuceloglu, G., & Erturk, A. (2019). Impacts of land cover/use changes on hydrological processes in a rapidly urbanizing mid-latitude water supply catchment. Water, 11(5), 1075. https://doi.org/10.3390/w11051075
Singkran, N., & Kandasamy, J. (2016). Developing a strategic flood risk management framework for Bangkok, Thailand. Natural Hazards, 84, 933-957. https://doi.org/10.1007/s11069-016-2467-x
Smith, K. (2013). Environmental hazards: assessing risk and reducing disaster. Routledge, London, United Kingdom.
Tanoue, M., Taguchi, R., Nakata, S., Watanabe, S., Fujimori, S., & Hirabayashi, Y. (2020). Estimation of direct and indirect economic losses caused by a flood with long‐lasting inundation: application to the 2011 Thailand flood. Water resources research, 56(5), e2019WR026092. https://doi.org/10.1029/2019WR026092
Thaler, T., & Levin-Keitel, M. (2016). Multi-level stakeholder engagement in flood risk management—A question of roles and power: Lessons from England. Environmental Science & Policy, 55, 292-301. https://doi.org/10.1016/j.envsci.2015.04.007
Thieken, A. H., Bessel, T., Kienzler, S., Kreibich, H., Müller, M., Pisi, S., & Schröter, K. (2016). The flood of June 2013 in Germany: how much do we know about its impacts? Natural Hazards and Earth System Sciences, 16(6), 1519-1540. https://doi.org/10.5194/nhess-16-1519-2016
Thieken, A. H., Samprogna Mohor, G., Kreibich, H., & Müller, M. (2022). Compound inland flood events: different pathways, different impacts and different coping options. Natural Hazards and Earth System Sciences, 22(1), 165-185. https://doi.org/10.5194/nhess-22-165-2022
Tingsanchali, T. (2012). Urban flood disaster management. Procedia engineering, 32, 25-37. https://doi.org/10.1016/j.proeng.2012.01.1233
Tucci, C. (2008). Urban flood risk management: A tool for integrated flood management. Geneva, world meteorological organisation. 
UNISDR, C. (2015). The human cost of natural disasters: A global perspective. Centre for Research on the Epidemiology of Disasters. UN Office for Disaster Risk Reduction.
Verlynde, N., Voltaire, L., & Chagnon, P. (2019). Exploring the link between flood risk perception and public support for funding on flood mitigation policies. Journal of Environmental Planning and Management, 62(13), 2330-2351. https://doi.org/10.1080/09640568.2018.1546676
Watson, R. T., Zinyowera, M. C., & Moss, R. H. (1996). Climate Change 1995: Impacts, adaptations and mitigation of climate change: scientific technical analyses. Published By: Cambridge University Press.
Webber, J., Fletcher, T., Cunningham, L., Fu, G., Butler, D., & Burns, M. (2020). Is green infrastructure a viable strategy for managing urban surface water flooding? Urban Water Journal, 17(7), 598-608. https://doi.org/10.1080/1573062X.2019.1700286
Wilby, R. L., & Keenan, R. (2012). Adapting to flood risk under climate change. Progress in physical geography, 36(3), 348-378. https://doi.org/10.1177/0309133312438908
Yang, J.-L., & Zhang, G.-L. (2011). Water infiltration in urban soils and its effects on the quantity and quality of runoff. Journal of soils and sediments, 11, 751-761. https://doi.org/10.1007/s11368-011-0356-1
Yang, L., Smith, J., Baeck, M. L., & Morin, E. (2019). Flash flooding in arid/semiarid regions: climatological analyses of flood-producing storms in central Arizona during the North American monsoon. Journal of Hydrometeorology, 20(7), 1449-1471. https://doi.org/10.1175/JHM-D-19-0016.1
Yang, Y., Sun, L., Li, R., Yin, J., & Yu, D. (2020). Linking a storm water management model to a novel two-dimensional model for urban pluvial flood modeling. International Journal of Disaster Risk Science, 11, 508-518. https://doi.org/10.1007/s13753-020-00278-7
Zarghami, S. A., & Dumrak, J. (2021). A system dynamics model for social vulnerability to natural disasters: Disaster risk assessment of an Australian city. International journal of disaster risk reduction, 60, 102258 https://doi.org/10.1016/j.ijdrr.2021.102258
CAPTCHA Image