Abdul Rasheed, P., Thomas, R. T., & Namboorimadathil Backer, S. (2023). Synthesis, Characterization, and Applications of Graphitic Carbon Nitride, Chapter 7. Elsevier. Kerala, India.Bijari, M., Shahbazi, A., Vatanpour, V., & Younesi, H. (2024). Synthesis of G-C3N4/Mxene Composite for Enhanced Photocatalytic Degradation of Eosin Y Dye in Aqueous Solutions Under Visible Light. Sustainable Earth Trends, 4(4), 1-9. https://doi.org/10.48308/set.2024.236700.1063
Chen, X., Jin, Y., Huang, P., Zheng, Z., Li, L.-P., Lin, C.-Y., Chen, X., Ding, R., Liu, J., & Chen, R. (2024). Solar driven photocatalytic disinfection by Z-scheme heterojunction of In2O3/g-C3N4: Performance, mechanism and application. Applied Catalysis B: Environmental, 340, 123235. https://doi.org/10.1016/j.apcatb.2023.123235
Das, K. K., Patnaik, S., Mansingh, S., Behera, A., Mohanty, A., Acharya, C., & Parida, K. M. (2020). Enhanced photocatalytic activities of polypyrrole sensitized zinc ferrite/graphitic carbon nitride n-n heterojunction towards ciprofloxacin degradation, hydrogen evolution and antibacterial studies. Journal of Colloid and Interface Science, 561, 551-567. https://doi.org/10.1016/j.jcis.2019.11.030
Dousti, S., Mahmoodi, B., Bijari, M., & Shahbazi, A. (2024). Investigating the effect of various precursors in the synthesis and improvement of the photocatalytic performance of graphite carbon nitride in the degradation of Rhodamine B dye under visible light. Journal of Color Science and Technology, 18(2), 135-150. https://doi.org/10.30509/JCST.2024.167291.1224
Du, J., Zhang, N., Ma, S., Wang, G., Ma, C., Liu, G., & Wu, W. (2024). Visible light-driven C/O-g-C3N4 activating peroxydisulfate to effectively inactivate antibiotic resistant bacteria and inhibit the transformation of antibiotic resistance genes: Insights on the mechanism. Journal of Hazardous Materials, 464, 132972. https://doi.org/10.1016/j.jhazmat.2023.132972
Farid, M., Ahsan, A., Asam, Z., Abbas, M., Fatima, A., Salman, M., & Aslam,. A. (2023). Principles and Applications of Environmental Biotechnology for Sustainable Future. Climate-Resilient Agriculture, Vol 1: Springer International Publishing. London, Berlin.
El-Khawaga, M., Elsayed, A., Gobara, M., Suliman, A., Hashem, H., Zaher, A., & Salem, S. (2023). Green synthesized ZnO nanoparticles by Saccharomyces cerevisiae and their antibacterial activity and photocatalytic degradation.
Biomass Conversion and Biorefinery, 1-12.
https://doi.org/10.1007/s13399-023-04827-0
He, D., Yang, H., Jin, D., Qu, J., Yuan, X., Zhang, Y. N., & Peijnenburg, W. J. (2021). Rapid water purification using modified graphitic carbon nitride and visible light. Applied Catalysis B: Environmental, 285, 119864. https://doi.org/10.1016/j.apcatb.2020.119864
Heo, S., Shukla, S., Oh, Y., Bajpai, K., Lee, U., Cho, J., & Huh, S. (2019). Shape-controlled assemblies of graphitic carbon nitride polymer for efficient sterilization therapies of water microbial contamination via 2D g-C
3N
4 under visible light illumination.
Materials Science and Engineering: C, 104, 109846.
https://doi.org/10.1016/j.msec.2019.109846
Hijnen, W. A. M., Beerendonk, E. F., & Medema, G. J. (2006). Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: A review. Water Research, 40(1), 3-22. https://doi.org/10.1016/j.watres.2005.10.030
Kadoya, S., Nishimura, O., Kato, H., & Sano, D. (2021). Predictive water virology using regularized regression analyses for projecting virus inactivation efficiency in ozone disinfection.
Water Research X, 11, 100093.
https://doi.org/10.1016/j.wroa.2021.100093
Li, C., Sun, Z., Zhang, W., Yu, C., & Zheng, S. (2018). Highly efficient g-C3N4/TiO2/kaolinite composite with novel three-dimensional structure and enhanced visible light responding ability towards ciprofloxacin and S. aureus. Applied Catalysis B: Environmental, 220, 272-282. https://doi.org/10.1016/j.apcatb.2017.08.044
Li, F., Huang, Y., Gao, C., & Wu, X. (2021). The enhanced photo-catalytic CO2 reduction performance of g-C3N4 with high selectivity by coupling CoNiSx. Materials Research Bulletin, 144, 111488. https://doi.org/10.1016/j.materresbull.2021.111488
Li, Y., Li, Y., Ma, S., Wang, P., Hou, Q., Han, J., & Zhan, S. (2017). Efficient water disinfection with Ag2WO4-doped mesoporous g-C3N4 under visible light. Journal of Hazardous Materials, 338, 33-46. https://doi.org/10.1016/j.jhazmat.2017.05.011
Lin, T., Song, Z., Wu, Y., Chen, L., Wang, S., Fu, F., & Guo, L. (2018). Boron- and phenyl-codoped graphitic carbon nitride with greatly enhanced light responsive range for photocatalytic disinfection. Journal of Hazardous Materials, 358, 62-68. https://doi.org/10.1016/j.jhazmat.2018.06.053
Ma, Y., Zhang, J., Wang, Y., Chen, Q., Feng, Z., & Sun, T. (2019). Concerted catalytic and photocatalytic degradation of organic pollutants over CuS/g-C3N4 catalysts under light and dark conditions. Journal of Advanced Research, 16, 135-143. https://doi.org/10.1016/j.jare.2018.10.003
Oluseun Akintunde, O., Hu, J., Golam Kibria, M., Pogosian, S., & Achari, G. (2023). A facile synthesis process of GCN/ZnO–Cu nanocomposite and the evaluation of the performance for the photocatalytic degradation of organic pollutants and the disinfection of wastewater under visible light. Chemosphere, 344, 140287. https://doi.org/10.1016/j.chemosphere.2023.140287
Parasuraman, V., Perumalswamy Sekar, P., Mst Akter, S., Ram Lee, W., Young Park, T., Gon Kim, C., & Kim, S. (2023). Improved photocatalytic disinfection of dual oxidation state (dos)-Ni/g–C3N4 under indoor daylight. Journal of Photochemistry and Photobiology A: Chemistry, 434, 114262. https://doi.org/10.1016/j.jphotochem.2022.114262
Pule, D. (2016). Conventional and Alternative Disinfection Methods of Legionella in Water Distribution Systems – Review. Construction Science, 19(1), 21-26. https://doi.org/10.1515/cons-2016-0007
Rathi, V. H., Jeice, A. R., & Jayakumar, K. (2023). Green synthesis of Ag/CuO and Ag/TiO2 nanoparticles for enhanced photocatalytic dye degradation, antibacterial, and antifungal properties. Applied Surface Science Advances, 18, 100476. https://doi.org/10.1016/j.apsadv.2023.100476
Song, T., Zhang, P., Wang, T., Ali, A., & Zeng, H. (2018). Alkali-assisted fabrication of holey carbon nitride nanosheet with tunable conjugated system for efficient visible-light-driven water splitting. Applied Catalysis B: Environmental, 224, 877-885. https://doi.org/10.1016/j.apcatb.2017.11.039
Sabariselvan, L., Okla, M. K., Brindha, B., Kokilavani, S., A Abdel-maksoud, M., El-Tayeb, M. A., & Sudheer Khan, S. (2024). Interfacial coupling of CuFe2O4 induced hotspots over self-assembled g-C3N4 nanosheets as an efficient photocatalytic bacterial disinfectant. Environmental Pollution, 342, 123076. https://doi.org/10.1016/j.envpol.2023.123076
Stefa, S., Zografaki, M., Dimitropoulos, M., Paterakis, G., Galiotis, C., Sangeetha, P., & Binas, V. (2023). High surface area g-C3N4 nanosheets as superior solar-light photocatalyst for the degradation of parabens. Applied Physics A, 129(11), 754. https://doi.org/10.1007/s00339-023-07032-y
Tabasum, S., Rani, S., Sharma, A., Dhupar, N., Singh, P., Bagri, U., & Kumar, D. (2023). Efficient Photocatalytic Degradation of Chlorpyrifos Pesticide from Aquatic Agricultural Waste Using g-C3N4 Decorated Graphene Oxide/V2O5 Nanocomposite. Topics in Catalysis, 67, 1-12. https://doi.org/10.1007/s11244-023-01865-w
Wang, J., Fan, Q., Kou, L., Chen, H., Xing, X., Duan, W., & Jiang, K. (2023). LED-driven sulfamethazine removal and bacterial disinfection by a novel photocatalytic textile impregnated with oxygen vacancy-rich BiO2-x/g-C3N4 hybrid.
Chemical Engineering Journal, 474, 145590.
https://doi.org/10.1016/j.cej.2023.145590
Xu, J., Fujitsuka, M., Kim, S., Wang, Z., & Majima, T. (2019). Unprecedented effect of CO2 calcination atmosphere on photocatalytic H2 production activity from water using g-C3N4 synthesized from triazole polymerization.
Applied Catalysis B: Environmental, 241, 141-148.
https://doi.org/10.1016/j.apcatb.2018.09.023
Xu, X., Wang, S., Yu, X., Dawa, J., Gui, D., & Tang, R. (2020). Biosynthesis of Ag deposited phosphorus and sulfur co-doped g-C3N4 with enhanced photocatalytic inactivation performance under visible light.
Applied Surface Science, 501, 144245.
https://doi.org/10.1016/j.apsusc.2019.144245
Yang, Y., Zhang, C., Huang, D., Zeng, G., Huang, J., Lai, C., & Xiong, W. (2019). Boron nitride quantum dots decorated ultrathin porous g-C3N4: Intensified exciton dissociation and charge transfer for promoting visible-light-driven molecular oxygen activation.
Applied Catalysis B: Environmental, 245, 87-99.
https://doi.org/10.1016/j.apcatb.2018.12.049
Yu, G., Wang, Y., Cao, H., Zhao, H., & Xie, Y. (2020). Reactive Oxygen Species and Catalytic Active Sites in Heterogeneous Catalytic Ozonation for Water Purification. Environmental Science & Technology, 54(10), 5931-5946. doi: 10.1021/acs.est.0c00575
Zhang, X., Zhao, X., Li, H., Hao, X., Xu, J., Tian, J., & Wang, Y. (2023). Corrigendum: Detection methods of nanoparticles synthesized by gas-phase method: a review.
Frontiers in Chemistry, Volume 11. Switzerland. https://doi.org/10.3389/fchem.2023.1351829
Zhong, K.-Q., Xie, D.-H., Liu, Y.-J., Guo, P.-C., & Sheng, G.-P. (2023). Modulation of ultrathin nanosheet structure and nitrogen defects in graphitic carbon nitride for efficient photocatalytic bacterial inactivation.
Water Research X, 20, 100193.
https://doi.org/10.1016/j.wroa.2023.100193
Zhou, Y., Zhang, L., Huang, W., Kong, Q., Fan, X., Wang, M., & Shi, J. (2016). N-doped graphitic carbon-incorporated g-C3N4 for remarkably enhanced photocatalytic H2 evolution under visible light.
Carbon, 99, 111-117.
https://doi.org/10.1016/j.carbon.2015.12.008
ارسال نظر در مورد این مقاله