با همکاری انجمن هیدرولیک ایران

نوع مقاله : پژوهشی کاربردی

نویسندگان

پژوهشکده علوم محیطی، دانشگاه شهید بهشتی، تهران، ایران

چکیده

گندزدایی میکروبی آب به معنای غیرفعال ‌کردن یا حذف میکروارگانیسم‌های بیماری‌زا است. روش‏های متداول و معمول تصفیه میکروبی آب همانند، اکسیداسیون شیمیایی با استفاده از اکسیدان‏های مختلف مانند کلر، دی‌اکسید کلر، کلرامین و ازن و حتی استفاده از تابش فرابنفش از روش‏های رایج حذف عوامل آلاینده هستند. در این میان، یکی از روش‌های ‌نوین حذف باکتری‌های بیماری‌زا از محلول‌های آبی، روش اکسیداسیون پیشرفته و ضدعفونی‌کردن فتوکاتالیستی با استفاده از نانومواد نیمه‌هادی است. هدف از این مطالعه حذف فتوکاتالیستی باکتری اشریشیا کلی (E.coli) با استفاده از فتوکاتالیست‌ کربن نیترید گرافیتی سنتز شده با پیش‌ماده ملامین است. صحت روش سنتز فتوکاتالیست‌ها با انجام آنالیزهای طیف‌سنجی پراش پرتو ایکس XRD))، تخلخل‌سنجی (BET)، طیف‌سنجی مادون‌قرمز (FT-IR)، طیف‌سنجی فتولومینسانس (PL) و طیف‌سنجی بازتابی روبشی (DRS) و همچنین تصاویر میکروسکوپ الکترونی روبشی (FE-SEM) بررسی شد. در ادامه برای بررسی عملکرد آنتی‌باکتریال فوتوکاتالیست‌های سنتز شده، از آزمایش‌ دیسک دیفیوژن و بررسی میزان زنده‏مانی باکتری در محیط جامد بعد از اتمام فرایند فوتوکاتالیستی، استفاده شد. طبق نتایج به‌دست‌آمده، فتوکاتالیست‌های سنتز شده در این مطالعه، دارای راندمان حذف مناسبی در برابر باکتریE.coli  تحت تابش نور مرئی هستند که در میان آن‌ها کربن نیترید گرافیتی سنتز شده در دمای سنتز ۵۵۰ درجه سانتی‌گراد و نرخ جریان گاز N2 به میزان mL/min 20 (CN-20) موفق به حذف کامل باکتری E.coli در نمونه‌ محلول آبی تهیه شده در محیط آزمایشگاه و با غلظت اولیه CFU/mL 107 در مدت 4/5 ساعت تحت تابش نور مرئی شد.

کلیدواژه‌ها

موضوعات

Abdul Rasheed, P., Thomas, R. T., & Namboorimadathil Backer, S. (2023). Synthesis, Characterization, and Applications of  Graphitic Carbon Nitride, Chapter 7. Elsevier. Kerala, India.Bijari, M., Shahbazi, A., Vatanpour, V., & Younesi, H. (2024). Synthesis of G-C3N4/Mxene Composite for Enhanced Photocatalytic Degradation of Eosin Y Dye in Aqueous Solutions Under Visible Light. Sustainable Earth Trends, 4(4), 1-9. https://doi.org/10.48308/set.2024.236700.1063
Chan, K. L. D. (2017). Graphitic Carbon-Based Nanostructures for Energy and Environmental Applications. Ph.D, The Chinese University of Hong Kong, Hong Kong, China. https://login.nduezproxy.idm.oclc.org/login?url=https://www.proquest.com/dissertations-theses/graphitic-carbon-based-nanostructures-energy/docview/1991031432/se-2?accountid=173708
Chen, X., Jin, Y., Huang, P., Zheng, Z., Li, L.-P., Lin, C.-Y., Chen, X., Ding, R., Liu, J., & Chen, R. (2024). Solar driven photocatalytic disinfection by Z-scheme heterojunction of In2O3/g-C3N4: Performance, mechanism and application. Applied Catalysis B: Environmental, 340, 123235. https://doi.org/10.1016/j.apcatb.2023.123235
Das, K. K., Patnaik, S., Mansingh, S., Behera, A., Mohanty, A., Acharya, C., & Parida, K. M. (2020). Enhanced photocatalytic activities of polypyrrole sensitized zinc ferrite/graphitic carbon nitride n-n heterojunction towards ciprofloxacin degradation, hydrogen evolution and antibacterial studies. Journal of Colloid and Interface Science, 561, 551-567. https://doi.org/10.1016/j.jcis.2019.11.030
Dousti, S., Mahmoodi, B., Bijari, M., & Shahbazi, A. (2024). Investigating the effect of various precursors in the synthesis and improvement of the photocatalytic performance of graphite carbon nitride in the degradation of Rhodamine B dye under visible light. Journal of Color Science and Technology, 18(2), 135-150. https://doi.org/10.30509/JCST.2024.167291.1224
Du, J., Zhang, N., Ma, S., Wang, G., Ma, C., Liu, G., & Wu, W. (2024). Visible light-driven C/O-g-C3N4 activating peroxydisulfate to effectively inactivate antibiotic resistant bacteria and inhibit the transformation of antibiotic resistance genes: Insights on the mechanism. Journal of Hazardous Materials, 464, 132972. https://doi.org/10.1016/j.jhazmat.2023.132972
Farid, M., Ahsan, A., Asam, Z., Abbas, M., Fatima, A., Salman, M., & Aslam,. A. (2023). Principles and Applications of Environmental Biotechnology for Sustainable Future. Climate-Resilient Agriculture, Vol 1: Springer International Publishing. London, Berlin.
El-Khawaga, M., Elsayed, A., Gobara, M., Suliman, A., Hashem, H., Zaher, A., & Salem, S. (2023). Green synthesized ZnO nanoparticles by Saccharomyces cerevisiae and their antibacterial activity and photocatalytic degradation. Biomass Conversion and Biorefinery, 1-12. https://doi.org/10.1007/s13399-023-04827-0
He, D., Yang, H., Jin, D., Qu, J., Yuan, X., Zhang, Y. N., & Peijnenburg, W. J. (2021). Rapid water purification using modified graphitic carbon nitride and visible light. Applied Catalysis B: Environmental, 285, 119864. https://doi.org/10.1016/j.apcatb.2020.119864
Heo, S., Shukla, S., Oh, Y., Bajpai, K., Lee, U., Cho, J., & Huh, S. (2019). Shape-controlled assemblies of graphitic carbon nitride polymer for efficient sterilization therapies of water microbial contamination via 2D g-C3N4 under visible light illumination. Materials Science and Engineering: C, 104, 109846. https://doi.org/10.1016/j.msec.2019.109846
Hijnen, W. A. M., Beerendonk, E. F., & Medema, G. J. (2006). Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: A review. Water Research, 40(1), 3-22. https://doi.org/10.1016/j.watres.2005.10.030
Kadoya, S., Nishimura, O., Kato, H., & Sano, D. (2021). Predictive water virology using regularized regression analyses for projecting virus inactivation efficiency in ozone disinfection. Water Research X, 11, 100093. https://doi.org/10.1016/j.wroa.2021.100093
Li, C., Sun, Z., Zhang, W., Yu, C., & Zheng, S. (2018). Highly efficient g-C3N4/TiO2/kaolinite composite with novel three-dimensional structure and enhanced visible light responding ability towards ciprofloxacin and S. aureus. Applied Catalysis B: Environmental, 220, 272-282. https://doi.org/10.1016/j.apcatb.2017.08.044
Li, F., Huang, Y., Gao, C., & Wu, X. (2021). The enhanced photo-catalytic CO2 reduction performance of g-C3N4 with high selectivity by coupling CoNiSx. Materials Research Bulletin, 144, 111488. https://doi.org/10.1016/j.materresbull.2021.111488
Li, Y., Li, Y., Ma, S., Wang, P., Hou, Q., Han, J., & Zhan, S. (2017). Efficient water disinfection with Ag2WO4-doped mesoporous g-C3N4 under visible light. Journal of Hazardous Materials, 338, 33-46. https://doi.org/10.1016/j.jhazmat.2017.05.011
Lin, T., Song, Z., Wu, Y., Chen, L., Wang, S., Fu, F., & Guo, L. (2018). Boron- and phenyl-codoped graphitic carbon nitride with greatly enhanced light responsive range for photocatalytic disinfection. Journal of Hazardous Materials, 358, 62-68. https://doi.org/10.1016/j.jhazmat.2018.06.053
Ma, Y., Zhang, J., Wang, Y., Chen, Q., Feng, Z., & Sun, T. (2019). Concerted catalytic and photocatalytic degradation of organic pollutants over CuS/g-C3N4 catalysts under light and dark conditions. Journal of Advanced Research, 16, 135-143. https://doi.org/10.1016/j.jare.2018.10.003
Oluseun Akintunde, O., Hu, J., Golam Kibria, M., Pogosian, S., & Achari, G. (2023). A facile synthesis process of GCN/ZnO–Cu nanocomposite and the evaluation of the performance for the photocatalytic degradation of organic pollutants and the disinfection of wastewater under visible light. Chemosphere, 344, 140287. https://doi.org/10.1016/j.chemosphere.2023.140287
Parasuraman, V., Perumalswamy Sekar, P., Mst Akter, S., Ram Lee, W., Young Park, T., Gon Kim, C., & Kim, S. (2023). Improved photocatalytic disinfection of dual oxidation state (dos)-Ni/g–C3N4 under indoor daylight. Journal of Photochemistry and Photobiology A: Chemistry, 434, 114262. https://doi.org/10.1016/j.jphotochem.2022.114262
Pule, D. (2016). Conventional and Alternative Disinfection Methods of Legionella in Water Distribution Systems – Review. Construction Science, 19(1), 21-26. https://doi.org/10.1515/cons-2016-0007
Rathi, V. H., Jeice, A. R., & Jayakumar, K. (2023). Green synthesis of Ag/CuO and Ag/TiO2 nanoparticles for enhanced photocatalytic dye degradation, antibacterial, and antifungal properties. Applied Surface Science Advances, 18, 100476. https://doi.org/10.1016/j.apsadv.2023.100476
Song, T., Zhang, P., Wang, T., Ali, A., & Zeng, H. (2018). Alkali-assisted fabrication of holey carbon nitride nanosheet with tunable conjugated system for efficient visible-light-driven water splitting. Applied Catalysis B: Environmental, 224, 877-885. https://doi.org/10.1016/j.apcatb.2017.11.039
Sabariselvan, L., Okla, M. K., Brindha, B., Kokilavani, S., A Abdel-maksoud, M., El-Tayeb, M. A., & Sudheer Khan, S. (2024). Interfacial coupling of CuFe2O4 induced hotspots over self-assembled g-C3N4 nanosheets as an efficient photocatalytic bacterial disinfectant. Environmental Pollution, 342, 123076. https://doi.org/10.1016/j.envpol.2023.123076
Stefa, S., Zografaki, M., Dimitropoulos, M., Paterakis, G., Galiotis, C., Sangeetha, P., & Binas, V. (2023). High surface area g-C3N4 nanosheets as superior solar-light photocatalyst for the degradation of parabens. Applied Physics A, 129(11), 754. https://doi.org/10.1007/s00339-023-07032-y
Tabasum, S., Rani, S., Sharma, A., Dhupar, N., Singh, P., Bagri, U., & Kumar, D. (2023). Efficient Photocatalytic Degradation of Chlorpyrifos Pesticide from Aquatic Agricultural Waste Using g-C3N4 Decorated Graphene Oxide/V2O5 Nanocomposite. Topics in Catalysis, 67, 1-12. https://doi.org/10.1007/s11244-023-01865-w
Wang, J., Fan, Q., Kou, L., Chen, H., Xing, X., Duan, W., & Jiang, K. (2023). LED-driven sulfamethazine removal and bacterial disinfection by a novel photocatalytic textile impregnated with oxygen vacancy-rich BiO2-x/g-C3N4 hybrid. Chemical Engineering Journal, 474, 145590. https://doi.org/10.1016/j.cej.2023.145590
Xu, J., Fujitsuka, M., Kim, S., Wang, Z., & Majima, T. (2019). Unprecedented effect of CO2 calcination atmosphere on photocatalytic H2 production activity from water using g-C3N4 synthesized from triazole polymerization. Applied Catalysis B: Environmental, 241, 141-148. https://doi.org/10.1016/j.apcatb.2018.09.023
Xu, X., Wang, S., Yu, X., Dawa, J., Gui, D., & Tang, R. (2020). Biosynthesis of Ag deposited phosphorus and sulfur co-doped g-C3N4 with enhanced photocatalytic inactivation performance under visible light. Applied Surface Science, 501, 144245. https://doi.org/10.1016/j.apsusc.2019.144245
Yang, Y., Zhang, C., Huang, D., Zeng, G., Huang, J., Lai, C., & Xiong, W. (2019). Boron nitride quantum dots decorated ultrathin porous g-C3N4: Intensified exciton dissociation and charge transfer for promoting visible-light-driven molecular oxygen activation. Applied Catalysis B: Environmental, 245, 87-99. https://doi.org/10.1016/j.apcatb.2018.12.049
Yu, G., Wang, Y., Cao, H., Zhao, H., & Xie, Y. (2020). Reactive Oxygen Species and Catalytic Active Sites in Heterogeneous Catalytic Ozonation for Water Purification. Environmental Science & Technology, 54(10), 5931-5946. doi: 10.1021/acs.est.0c00575
Zhang, X., Zhao, X., Li, H., Hao, X., Xu, J., Tian, J., & Wang, Y. (2023). Corrigendum: Detection methods of nanoparticles synthesized by gas-phase method: a review. Frontiers in Chemistry, Volume 11. Switzerland. https://doi.org/10.3389/fchem.2023.1351829
Zhong, K.-Q., Xie, D.-H., Liu, Y.-J., Guo, P.-C., & Sheng, G.-P. (2023). Modulation of ultrathin nanosheet structure and nitrogen defects in graphitic carbon nitride for efficient photocatalytic  bacterial inactivation. Water Research X, 20, 100193. https://doi.org/10.1016/j.wroa.2023.100193
Zhou, Y., Zhang, L., Huang, W., Kong, Q., Fan, X., Wang, M., & Shi, J. (2016). N-doped graphitic carbon-incorporated g-C3N4 for remarkably enhanced photocatalytic H2 evolution under visible light. Carbon, 99, 111-117.  https://doi.org/10.1016/j.carbon.2015.12.008
CAPTCHA Image